cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018213 Alkane (or paraffin) numbers l(12,n).

Original entry on oeis.org

1, 5, 30, 110, 365, 1001, 2520, 5720, 12190, 24310, 46252, 83980, 147070, 248710, 408760, 653752, 1021735, 1562275, 2343770, 3453450, 5008003, 7153575, 10080720, 14024400, 19284460, 26225628, 35304920, 47071640
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

Equals (1/2) * ((A000582) + (A000332 interleaved with zeros)) = (1/2) * ((1, 10, 55, 220, 715...) + (1, 0, 5, 0, 15,...)); where A000582 = binomial(n,9) and A000332 = binomial(n,4).

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • Winston C. Yang (paper in preparation).

Programs

  • Magma
    [(1/(2*Factorial(9)))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9)+(1/6)*(1/2^7)*(n+2)*(n+4)*(n+6)*(n+8)*(1/2)*(1+(-1)^n): n in [0..40]]; // Vincenzo Librandi, Oct 16 2013
  • Mathematica
    CoefficientList[Series[(5 x^4 + 10 x^2 + 1)/((x - 1)^10 (x + 1)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 16 2013 *)
    LinearRecurrence[{5, -5, -15, 35, 1, -65, 45, 45, -65, 1, 35, -15, -5, 5, -1},{1, 5, 30, 110, 365, 1001, 2520, 5720, 12190, 24310, 46252, 83980, 147070, 248710, 408760},101] (* Ray Chandler, Sep 23 2015 *)

Formula

l(c, r) = 1/2 binomial(c+r-3, r) + 1/2 d(c, r), where d(c, r) is binomial((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, binomial((c + r - 4)/2, r/2) if c is even and r is even, binomial((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: (5*x^4+10*x^2+1)/((x-1)^10*(x+1)^5). [Colin Barker, Aug 06 2012]
a(n) = (1/(2*9!))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9) +(1/6)*(1/2^7)*(n+2)*(n+4)*(n+6)*(n+8)*(1/2)*(1+(-1)^n). [Yosu Yurramendi, Jun 23 2013]