A018214 Alkane (or paraffin) numbers l(13,n).
1, 6, 36, 146, 511, 1512, 4032, 9752, 21942, 46252, 92504, 176484, 323554, 572264, 981024, 1634776, 2656511, 4218786, 6562556, 10016006, 15024009, 22177584, 32258304, 46282704, 65567164, 91792792, 127097712, 174169352
Offset: 0
References
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
- Winston C. Yang (paper in preparation).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Classic Sequences
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
- Index entries for linear recurrences with constant coefficients, signature (6, -10, -10, 50, -34, -66, 110, 0, -110, 66, 34, -50, 10, 10, -6, 1).
Programs
-
Magma
[(1/(2*Factorial(10)))*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*((n+1)*(n+3)*(n+5)*(n+7)*(n+9)+1*3*5*7*9)-(1/6)*(1/2^8)*(n^4+22*n^3+170*n^2+539*n+579)*(1/2)*(1-(-1)^n): n in [0..40]]; // Vincenzo Librandi, Oct 16 2013
-
Mathematica
CoefficientList[Series[-(5 x^4 + 10 x^2 + 1)/((x - 1)^11 (x + 1)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 16 2013 *) LinearRecurrence[{6, -10, -10, 50, -34, -66, 110, 0, -110, 66, 34, -50, 10, 10, -6, 1},{1, 6, 36, 146, 511, 1512, 4032, 9752, 21942, 46252, 92504, 176484, 323554, 572264, 981024, 1634776},28] (* Ray Chandler, Sep 23 2015 *)
Formula
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: -(5*x^4+10*x^2+1)/((x-1)^11*(x+1)^5). [Colin Barker, Aug 06 2012]
a(n) = (1/(2*10!))*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*((n+1)*(n+3)*(n+5)*(n+7)*(n+9) + 1*3*5*7*9)- (1/6)*(1/2^8)*(n^4+22*n^3+170*n^2+539*n+579)*(1/2)*(1-(-1)^n). [Yosu Yurramendi, Jun 23 2013]