Original entry on oeis.org
1, 13, 110, 765, 4746, 27314, 149052, 781725, 3975730, 19730150, 95973956, 459145778, 2165937060, 10095323460, 46566906872, 212857023069, 965208806082, 4345780250270, 19442667426420, 86489687956518
Offset: 0
-
CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-4*x)^3), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 16 2014 *)
A046527
A triangle related to A000108 (Catalan) and A000302 (powers of 4).
Original entry on oeis.org
1, 1, 1, 2, 5, 1, 5, 22, 9, 1, 14, 93, 58, 13, 1, 42, 386, 325, 110, 17, 1, 132, 1586, 1686, 765, 178, 21, 1, 429, 6476, 8330, 4746, 1477, 262, 25, 1, 1430, 26333, 39796, 27314, 10654, 2525, 362, 29, 1, 4862, 106762, 185517, 149052, 69930, 20754, 3973, 478, 33, 1
Offset: 0
Triangle begins as:
1;
1, 1;
2, 5, 1;
5, 22, 9, 1;
14, 93, 58, 13, 1;
42, 386, 325, 110, 17, 1;
132, 1586, 1686, 765, 178, 21, 1;
429, 6476, 8330, 4746, 1477, 262, 25, 1;
1430, 26333, 39796, 27314, 10654, 2525, 362, 29, 1;
4862, 106762, 185517, 149052, 69930, 20754, 3973, 478, 33, 1;
-
A046527:= func< n,k | k eq 0 select Catalan(n) else (1/2)*Binomial(n, k-1)*(4^(n-k+1) - Binomial(2*n, n)/(k*Catalan(k-1))) >;
[A046527(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 28 2024
-
T[n_, k_]:= If[k==0, CatalanNumber[n], (1/2)*Binomial[n,k-1]*(4^(n-k+ 1) -Binomial[2*n,n]/Binomial[2*(k-1),k-1])];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 28 2024 *)
-
def A046527(n,k):
if k==0: return catalan_number(n)
else: return (1/2)*binomial(n, k-1)*(4^(n-k+1) - binomial(2*n, n)/binomial(2*(k-1), k-1))
flatten([[A046527(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 28 2024
A113955
Riordan array (1/((1-4x)c(x)),xc(x)/sqrt(1-4x)), c(x) the g.f. of A000108.
Original entry on oeis.org
1, 3, 1, 11, 6, 1, 42, 30, 9, 1, 163, 140, 58, 12, 1, 638, 630, 325, 95, 15, 1, 2510, 2772, 1686, 624, 141, 18, 1, 9908, 12012, 8330, 3682, 1064, 196, 21, 1, 39203, 51480, 39796, 20264, 7050, 1672, 260, 24, 1, 155382, 218790, 185517, 106203, 42849, 12303, 2475
Offset: 0
Triangle begins
1;
3, 1;
11, 6, 1;
42, 30, 9, 1;
163, 140, 58, 12, 1;
638, 630, 325, 95, 15, 1;
A042940
Convolution of Catalan numbers A000108(n+1), n >= 0, with A038846.
Original entry on oeis.org
1, 18, 197, 1694, 12586, 84708, 530733, 3149542, 17910398, 98409532, 525628194, 2741723180, 14015785460, 70417793992, 348499310973, 1702076053686, 8216326834550, 39251274184780, 185770424237398, 871859230081092
Offset: 0
A090299
Table T(n,k), n>=0 and k>=0, read by antidiagonals : the k-th column given by the k-th polynomial K_k related to A090285.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 10, 5, 1, 14, 35, 22, 7, 1, 42, 126, 93, 38, 9, 1, 132, 462, 386, 187, 58, 11, 1, 429, 1716, 1586, 874, 325, 82, 13, 1, 1430, 6435, 6476, 3958, 1686, 515, 110, 15, 1, 4862, 24310, 26333, 17548, 8330, 2934, 765, 142, 17, 1
Offset: 0
row n=0 : 1, 1, 2, 5, 14, 42, 132, 429, ... see A000108.
row n=1 : 1, 3, 10, 35, 126, 462, 1716, 6435, ... see A001700.
row n=2 : 1, 5, 22, 93, 386, 1586, 6476, ... see A000346.
row n=3 : 1, 7, 38, 187, 874, 3958, 17548, ... see A000531.
row n=4 : 1, 9, 58, 325, 1686, 8330, 39796, ... see A018218.
Other rows :
A029887,
A042941,
A045724,
A042985,
A045492. Columns :
A000012,
A005408. Row n is the convolution of the row (n-j) with
A000984,
A000302,
A002457,
A002697 (first term omitted),
A002802,
A038845,
A020918,
A038846,
A020920 for j=1, 2, ..9 respectively.
Corrected by Alford Arnold, Oct 18 2006
Showing 1-5 of 5 results.
Comments