A018227 Magic numbers: atoms with full shells containing any of these numbers of electrons are considered electronically stable.
2, 10, 18, 36, 54, 86, 118, 168, 218, 290, 362, 460, 558, 686, 814, 976, 1138, 1338, 1538, 1780, 2022, 2310, 2598, 2936, 3274, 3666, 4058, 4508, 4958, 5470, 5982, 6560, 7138, 7786, 8434, 9156, 9878, 10678, 11478, 12360, 13242, 14210, 15178
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- S. Bjornholm, Clusters, condensed matter in embryonic form, Contemp. Phys. 31 1990 pp. 309-324 (p. 312).
- Encyclopedia Britannica, magic number
- D. Weise, The Pythagorean Approach to Problems of Periodicity in Science
- D. Weise, Pythagorean Approach To Problems Of Periodicity In Fermionic System
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Cf. A018226 for the magic numbers for nucleons (protons and neutrons).
Programs
-
Magma
[n*((n+3)^2 + 2)/6 + (n+2)*(1+(-1)^n)/4 - 1: n in [1..50]]; // Vincenzo Librandi, May 03 2011
-
PARI
a(n)=(2*n^3+12*n^2+25*n-6+(-1)^n*(3*n+6))/12 \\ Charles R Greathouse IV, Oct 18 2022
Formula
a(n) = a(n-1) + ((2*n + 3 + (-1)^n)^2)/8; a(n) = (2*n^3 + 12*n^2 + 25*n - 6 + (-1)^n*(3*n + 6))/12. - Warut Roonguthai, Jun 20 2005
a(n) = n*((n+3)^2 + 5)/6 for even n, a(n) = n*((n+3)^2 + 2)/6 - 1 [or C(n+3,3) - 2, i.e., A000292(n) - 2] for odd n. - Lekraj Beedassy, Feb 02 2006
Partial sums of A116471. - Lekraj Beedassy, Mar 31 2006
From Daniel Forgues, May 02 2011: (Start)
a(n) = n*((n+3)^2 + 2)/6 + (n+2)*(1+(-1)^n)/4 - 1, n >= 1.
a(n) = (n+1)*(n+2)*(n+3)/6 + (n+2)*(1+(-1)^n)/4 - 2, n >= 1.
a(n) = T_{n+1} + (n+2)*(1+(-1)^n)/4 - 2, n >= 1, where T_n is the n-th tetrahedral number.
G.f.: 2*x*(1 + 3*x - 2*x^2 - x^3 + x^4)/((1 - x)^4*(1 + x)^2). (End)
Comments