A018786 Numbers that are the sum of two 4th powers in more than one way.
635318657, 3262811042, 8657437697, 10165098512, 51460811217, 52204976672, 68899596497, 86409838577, 138519003152, 160961094577, 162641576192, 264287694402, 397074160625, 701252453457, 823372979472, 835279626752
Offset: 1
Keywords
Examples
a(1) = 59^4 + 158^4 = 133^4 + 134^4. a(2) = 7^4 + 239^4 = 157^4 + 227^4. Note the remarkable coincidence that here all of {7, 239, 157, 227} are primes. The next larger solution with this property is 17472238301875630082 = 62047^4 + 40351^4 = 59693^4 + 46747^4. - _M. F. Hasler_, Feb 21 2015
References
- R. K. Guy, Unsolved Problems in Number Theory, D1.
Links
- Mia Muessig, Table of n, a(n) for n = 1..30000 (terms 1..111 from Vincenzo Librandi, terms 112..4359 from Sean A. Irvine)
- J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
- Mia Muessig, Julia code for finding general taxicab numbers
- Eric Weisstein's World of Mathematics, Biquadratic Number.
- Eric Weisstein's World of Mathematics, Diophantine Equation.
Crossrefs
Programs
-
Mathematica
Select[ Split[ Sort[ Flatten[ Table[x^4 + y^4, {x, 1, 1000}, {y, 1, x}]]]], Length[#] > 1 & ][[All, 1]] (* Jean-François Alcover, Jul 26 2011 *)
-
PARI
n=4;L=[];for(b=1,999,for(a=1,b,t=a^n+b^n;for(c=a+1,sqrtn(t\2,n),ispower(t-c^n,n)||next;print1(t",")))) \\ M. F. Hasler, Feb 21 2015
-
PARI
list(lim)=my(v=List()); for(a=134,sqrtnint(lim,4)-1, my(a4=a^4); for(b=sqrtnint((4*a^2 + 6*a + 4)*a,4)+1,min(sqrtnint(lim-a4,4),a), my(t=a4+b^4); for(c=a+1,sqrtnint(lim,4), if(ispower(t-c^4,4), listput(v,t); break)))); Set(v) \\ Charles R Greathouse IV, Jul 12 2024
Formula
A weak lower bound: a(n) >> n^2. - Charles R Greathouse IV, Jul 12 2024
Comments