A018788 Number of subsets of {1,...,n} containing an arithmetic progression of length 3.
0, 0, 0, 1, 3, 9, 24, 63, 150, 343, 746, 1605, 3391, 7075, 14624, 30076, 61385, 124758, 252618, 510161, 1027632, 2066304, 4148715, 8322113, 16680369, 33413592, 66904484, 133923906, 268009597, 536257466, 1072861536, 2146225299, 4293173040, 8587388627
Offset: 0
Keywords
Examples
For n=4 the only subsets containing an arithmetic progression of length 3 are {1,2,3}, {2,3,4} and {1,2,3,4}. Thus a(4) = 3. - _David Nacin_, Mar 03 2012
Links
- Fausto A. C. Cariboni, Table of n, a(n) for n = 0..80 (terms up to a(40) from Alois P. Heinz)
- Wikipedia, Salem-Spencer set
- Index entries related to non-averaging sequences
Crossrefs
Cf. A051013.
Programs
-
Mathematica
a[n_] := a[n] = Count[Subsets[Range[n], {3, n}], {_, a_, _, b_, _, c_, _} /; b-a == c-b]; Table[Print[n, " ", a[n]]; a[n], {n, 0, 32}] (* Jean-François Alcover, May 30 2019 *)
-
Python
# Prints out all such sets from itertools import combinations as comb def containsap3(n): ap3list=list() for skip in range(1,(n+1)//2): for start in range (1,n+1-2*skip): ap3list.append(set({start,start+skip,start+2*skip})) s=list() for i in range(3,n+1): for temptuple in comb(range(1,n+1),i): tempset=set(temptuple) for sub in ap3list: if sub <= tempset: s.append(tempset) break return s # # Counts all such sets def a(n): return len(containsap3(n)) # David Nacin, Mar 03 2012
Formula
a(n) = 2^n - A051013(n). - David Nacin, Mar 03 2012
Extensions
a(33) from Alois P. Heinz, Jan 31 2014