cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018806 Sum of gcd(x, y) for 1 <= x, y <= n.

Original entry on oeis.org

1, 5, 12, 24, 37, 61, 80, 112, 145, 189, 220, 288, 325, 389, 464, 544, 593, 701, 756, 880, 989, 1093, 1160, 1336, 1441, 1565, 1700, 1880, 1965, 2205, 2296, 2488, 2665, 2829, 3028, 3328, 3437, 3621, 3832, 4152, 4273, 4621, 4748, 5040, 5373, 5597, 5736, 6168
Offset: 1

Views

Author

Keywords

Comments

a(n) is also the entrywise 1-norm of the n X n GCD matrix.

Crossrefs

Programs

  • Maple
    N:= 1000 # to get a(1) to a(N)
    g:= add(numtheory:-phi(k)*x^k*(1+x^k)/((1-x^k)^2*(1-x)),k=1..N):
    S:= series(g, x, N+1):
    seq(coeff(S,x,j), j=1..N); # Robert Israel, Jan 14 2015
  • Mathematica
    Table[nn = n;Total[Level[Table[Table[GCD[i, j], {i, 1, nn}], {j, 1, nn}], {2}]], {n, 1, 48}] (* Geoffrey Critzer, Jan 14 2015 *)
  • PARI
    a(n)=2*sum(i=1,n,sum(j=1,i-1,gcd(i,j)))+n*(n+1)/2 \\ Charles R Greathouse IV, Jun 21 2013
    
  • PARI
    a(n)=sum(k=1,n,eulerphi(k)*(n\k)^2) \\ Charles R Greathouse IV, Jun 21 2013
    
  • Python
    from sympy import totient
    def A018806(n): return sum(totient(k)*(n//k)**2 for k in range(1,n+1)) # Chai Wah Wu, Aug 05 2024

Formula

Sum_{k=1..n} phi(k)*(floor(n/k))^2. - Vladeta Jovovic, Nov 10 2002
a(n) ~ kn^2 log n, with k = 6/Pi^2. - Charles R Greathouse IV, Jun 21 2013
G.f.: Sum_{k >= 1} phi(k)*x^k*(1+x^k)/((1-x^k)^2*(1-x)). - Robert Israel, Jan 14 2015