cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018808 Number of lines through at least 2 points of an n X n grid of points.

Original entry on oeis.org

0, 0, 6, 20, 62, 140, 306, 536, 938, 1492, 2306, 3296, 4722, 6460, 8830, 11568, 14946, 18900, 23926, 29544, 36510, 44388, 53586, 63648, 75674, 88948, 104374, 121032, 139966, 160636, 184466, 209944, 239050, 270588, 305478, 342480, 383370, 427020
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A222267 (lines defined by n X n X n grid of points).
A288187 is the main entry for these graphs.
Cf. A331780.

Programs

  • Mathematica
    L[0]=0; L1[1]=0; R1[1]=0;
    L[n_]:=L[n]=2*L1[n]-L[n-1]+R1[n]
    L1[n_]:=L1[n]=2*L[n-1]-L1[n-1]+R2[n]
    R1[n_]:=R1[n]=R1[n-1]+4*(EulerPhi[n-1]-e[n])
    e[n_]:=If[Mod[n,2]==0,0,EulerPhi[(n-1)/2]]
    R2[n_]:= If[Mod[n,2]==0,(n-1)*EulerPhi[n-1], If[Mod[n,4]==1,(n-1)*EulerPhi[n-1]/2,0]]
    Table[L[n],{n,0,37}] (* Seppo Mustonen, Apr 25 2009 *)

Formula

(1/2) * (f(n, 1) - f(n, 2)) where f(n, k) = Sum ((n - |x|)(n - |y|)); -n < x < n, -n < y < n, (x, y)=k.
(1/2) * (f(n, 1) - f(n, 2)) where f(n, k) = Sum ((n - |kx|)(n - |ky|)); -n < kx < n, -n < ky < n, (x, y)=1. - Seppo Mustonen, Apr 18 2009
a(0) = L(0,1) = R1(0) = 0, a(n) = L(n,n) = 2L(n-1,n) - L(n-1,n-1) + R1(n), L(n-1,n) = 2L(n-1,n-1) - L(n-2,n-1) + R2(n), R1(n) = R1(n-1) + 4(phi(n-1) - e(n)), e(n)=0, n even, e(n) = phi((n-1)/2), n odd, R2(n) = (n-1)phi(n-1), n even, R2(n)=(n-1)phi(n-1)/2, n=1 mod 4, R2(n)=0, n=3 mod 4. - Seppo Mustonen, Apr 25 2009
a(n) = 2 * A331780(n). - Alois P. Heinz, Jun 05 2023