A018885 Squares using no more than two distinct digits.
0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 225, 400, 441, 484, 676, 900, 1444, 7744, 10000, 11881, 29929, 40000, 44944, 55225, 69696, 90000, 1000000, 4000000, 9000000, 9696996, 100000000, 400000000, 900000000, 6661661161, 10000000000
Offset: 1
Links
- Shawn A. Broyles, Table of n, a(n) for n = 1..85
- Alexandru Gica and Laurentiu Panaitopol, On Oblath's Problem, J. Integer Seqs., Vol. 6(3), 2003, article 03.3.5.
- Eric Weisstein's World of Mathematics, Square Number
Programs
-
Maple
F:= proc(r, a, b, m) # get all squares starting with r, with at most m further digits, all from {a,b} where a < b local res,Ls,Us,L,U,looking; if issqr(r) then res:= r else res:= NULL fi; if m = 0 then return res fi; Ls:= r*10^m + a*(10^m-1)/9; Us:= r*10^m + b*(10^m-1)/9; L:= isqrt(Ls); if L^2 > Ls then L:= L-1 fi; U:= isqrt(Us); if U^2 < Us then U:= U+1 fi; if L > U then res else res, procname(10*r+a,a,b,m-1), procname(10*r+b,a,b,m-1) fi end proc: S2:= {seq(i^2 mod 100, i=0..99)}: prs:= map(t -> `if`(t < 10, {0,t},{(t mod 10),(t - (t mod 10))/10}), S2): prs:= map(p -> `if`(nops(p)=1, seq(p union {s},s={$0..9} minus p), p), prs): Res:= NULL: for p in prs do a:= min(p); b:= max(p); if a > 0 then Res:= Res, F(a,a,b,14); fi; Res:= Res, F(b,a,b,14); od: sort(convert({0,Res},list)); # Robert Israel, Dec 03 2015
-
Mathematica
Select[Range[0, 10^5]^2, Length@ Union@ IntegerDigits@ # <= 2 &] (* Michael De Vlieger, Dec 03 2015 *) Select[Range[0,100000]^2,Count[DigitCount[#],0]>7&] (* Harvey P. Dale, Jul 25 2020 *)
-
PARI
for (n=0, 10^6, if ( #Set(digits(n^2))<=2, print1(n^2, ", ") ) ); \\ Michel Marcus, May 21 2015
Formula
For n > 4, a(n) = A016069(n-4)^2.
Extensions
0 inserted and definition edited by Jon E. Schoenfield, Jan 15 2014
Comments