cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018885 Squares using no more than two distinct digits.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 225, 400, 441, 484, 676, 900, 1444, 7744, 10000, 11881, 29929, 40000, 44944, 55225, 69696, 90000, 1000000, 4000000, 9000000, 9696996, 100000000, 400000000, 900000000, 6661661161, 10000000000
Offset: 1

Views

Author

Keywords

Comments

Is 6661661161 the largest term not of the form 10^k, 4*10^k or 9*10^k? Any larger ones must have >= 22 digits. - Robert Israel, Dec 03 2015

Crossrefs

Programs

  • Maple
    F:= proc(r, a, b, m)
    # get all squares starting with r, with at most m further digits, all from {a,b} where a < b
    local res,Ls,Us,L,U,looking;
    if issqr(r) then res:= r else res:= NULL fi;
    if m = 0 then return res fi;
    Ls:= r*10^m + a*(10^m-1)/9;
    Us:= r*10^m + b*(10^m-1)/9;
    L:= isqrt(Ls);
    if L^2 > Ls then L:= L-1 fi;
    U:= isqrt(Us);
    if U^2 < Us then U:= U+1 fi;
    if L > U then res
    else res, procname(10*r+a,a,b,m-1), procname(10*r+b,a,b,m-1)
    fi
    end proc:
    S2:= {seq(i^2 mod 100, i=0..99)}:
    prs:= map(t -> `if`(t < 10, {0,t},{(t mod 10),(t - (t mod 10))/10}), S2):
    prs:= map(p -> `if`(nops(p)=1, seq(p union {s},s={$0..9} minus p), p), prs):
    Res:= NULL:
    for p in prs do
      a:= min(p); b:= max(p);
      if a > 0 then
         Res:= Res, F(a,a,b,14);
      fi;
      Res:= Res, F(b,a,b,14);
    od:
    sort(convert({0,Res},list)); # Robert Israel, Dec 03 2015
  • Mathematica
    Select[Range[0, 10^5]^2, Length@ Union@ IntegerDigits@ # <= 2 &] (* Michael De Vlieger, Dec 03 2015 *)
    Select[Range[0,100000]^2,Count[DigitCount[#],0]>7&] (* Harvey P. Dale, Jul 25 2020 *)
  • PARI
    for (n=0, 10^6, if ( #Set(digits(n^2))<=2, print1(n^2, ", ") ) ); \\ Michel Marcus, May 21 2015

Formula

For n > 4, a(n) = A016069(n-4)^2.

Extensions

0 inserted and definition edited by Jon E. Schoenfield, Jan 15 2014