A018890 Numbers whose smallest expression as a sum of positive cubes requires exactly 7 cubes.
7, 14, 21, 42, 47, 49, 61, 77, 85, 87, 103, 106, 111, 112, 113, 122, 140, 148, 159, 166, 174, 178, 185, 204, 211, 223, 229, 230, 237, 276, 292, 295, 300, 302, 311, 327, 329, 337, 340, 356, 363, 390, 393, 401, 412, 419, 427, 438, 446, 453, 465, 491, 510, 518, 553, 616
Offset: 1
References
- J. Roberts, Lure of the Integers, entry 239.
Links
- T. D. Noe, Table of n, a(n) for n = 1..121
- F. Bertault, O. Ramaré, and P. Zimmermann, On sums of seven cubes, Math. Comp. 68 (1999), pp. 1303-1310.
- Jan Bohman and Carl-Erik Froberg, Numerical investigation of Waring's problem for cubes, Nordisk Tidskr. Informationsbehandling (BIT) 21 (1981), 118-122.
- K. S. McCurley, An effective seven-cube theorem, J. Number Theory, 19 (1984), 176-183.
- Eric Weisstein's World of Mathematics, Cubic Number
- Eric Weisstein's World of Mathematics, Waring's Problem
- Index entries for sequences related to sums of cubes
Programs
-
Mathematica
Select[Range[700], (pr = PowersRepresentations[#, 7, 3]; pr != {} && Count[pr, r_/; (Times @@ r) == 0] == 0)&] (* Jean-François Alcover, Jul 26 2011 *)
Comments