cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A002376 Least number of positive cubes needed to sum to n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6, 7, 8, 2, 3, 4, 5, 6, 7, 8, 9, 3, 4, 5, 1, 2, 3, 4, 5, 4, 5, 6, 2, 3, 4, 5, 6, 5, 6, 7, 3, 4, 5, 6, 7, 6, 7, 8, 4, 5, 6, 2, 3, 4, 5, 6, 5, 6, 7, 3, 4, 1, 2, 3, 4, 5, 6, 4, 5, 2, 3, 4, 5, 6, 7, 5, 6, 3, 3, 4, 5, 6, 7, 6, 7, 4, 4, 5, 2, 3, 4, 5, 6, 5, 5, 6, 3, 4, 5, 6, 7, 6, 6
Offset: 1

Views

Author

Keywords

Comments

No terms are greater than 9, see A002804. - Charles R Greathouse IV, Aug 01 2013

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. R. Zornow, De compositione numerorum e cubis integris positivus, J. Reine Angew. Math., 14 (1835), 276-280.

Crossrefs

Cf. A000578, A003325 (numbers requiring 2 cubes), A047702 (numbers requiring 3 cubes), A047703 (numbers requiring 4 cubes), A047704 (numbers requiring 5 cubes), A046040 (numbers requiring 6 cubes), A018890 (numbers requiring 7 cubes), A018888 (numbers requiring 8 or 9 cubes), A055401 (cubes needed by greedy algorithm).

Programs

  • Maple
    f:= proc(n) option remember;
      min(seq(procname(n - i^3)+1, i=1..floor(n^(1/3))))
    end proc:
    f(0):= 0:
    map(f, [$1..100]); # Robert Israel, Jun 30 2017
  • Mathematica
    CubesCnt[n_] := Module[{k = 1}, While[Length[PowersRepresentations[n, k, 3]] == 0, k++]; k]; Array[CubesCnt, 100] (* T. D. Noe, Apr 01 2011 *)
  • Python
    from itertools import count
    from sympy.solvers.diophantine.diophantine import power_representation
    def A002376(n):
        if n == 1: return 1
        for k in count(1):
            try:
                next(power_representation(n,3,k))
            except:
                continue
            return k # Chai Wah Wu, Jun 25 2024

Formula

The g.f. conjectured by Simon Plouffe in his 1992 dissertation,
-(-1-z-z^2-z^3-z^4-z^5-z^6+6*z^7)/(z+1)/(z^2+1)/(z^4+1)/(z-1)^2, is incorrect: the first wrong coefficient is that of z^26. - Robert Israel, Jun 30 2017

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A181402 Total number of positive integers below 10^n requiring 7 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 10, 73, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

An unpublished result of Deshouillers-Hennecart-Landreau, combined with Lemma 3 from Bertault, Ramaré, & Zimmermann implies that a(4)-a(34) are all 121. Probably a(n) = 121 for all n > 3. - Charles R Greathouse IV, Jan 23 2014

Crossrefs

Formula

A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + a(n) + A181404(n) + A130130(n) = A002283(n).
Conjectured g.f.: x*(1+9*x+63*x^2+48*x^3)/(1-x). - Colin Barker, May 04 2012
Conjectured e.g.f.: 121*(exp(x) - 1) - 120*x - 111*x^2/2 - 8*x^3. - Stefano Spezia, May 21 2024

Extensions

a(5)-a(7) from Lars Blomberg, May 04 2011
a(8)-a(34) from Charles R Greathouse IV, Jan 23 2014

A181403 Total number of n-digit numbers requiring 7 positive cubes in their representation as sum of cubes.

Original entry on oeis.org

1, 9, 63, 48
Offset: 1

Views

Author

Martin Renner, Jan 28 2011

Keywords

Comments

A181354(n) + A181376(n) + A181378(n) + A181380(n) + A181384(n) + A181401(n) + a(n) + A181405(n) + A171386(n) = A052268(n).

Crossrefs

Cf. A018890.

Formula

a(n) = A181402(n) - A181402(n-1).

A046040 Numbers that are the sum of 6 but no fewer positive cubes.

Original entry on oeis.org

6, 13, 20, 34, 39, 41, 46, 48, 53, 58, 60, 69, 76, 79, 84, 86, 95, 98, 102, 104, 105, 110, 117, 121, 123, 124, 132, 139, 147, 151, 158, 165, 170, 173, 177, 184, 196, 202, 203, 210, 215, 221, 222, 228, 235, 236, 242, 247, 249, 263, 265, 268, 273, 275, 284, 287
Offset: 1

Views

Author

Keywords

Comments

According to the McCurley article, it is conjectured that there are exactly 3922 terms of which the largest is a(3922) = 1290740.

Crossrefs

Programs

  • Mathematica
    Select[Range[300], (pr = PowersRepresentations[#, 6, 3]; pr != {} && Count[pr, r_/; (Times @@ r) == 0] == 0)&] (* Jean-François Alcover, Jul 26 2011 *)

Extensions

Corrected by Arlin Anderson (starship1(AT)gmail.com).

A245229 Primes that are the sum of 7 cubes and no fewer.

Original entry on oeis.org

7, 47, 61, 103, 113, 211, 223, 229, 311, 337, 401, 419, 491, 787, 1021, 1453, 1489, 1697, 2039, 3659, 4703, 5279
Offset: 1

Views

Author

Rafael F. Farias, Jul 13 2014

Keywords

Comments

Intersection of A018890 and A000040.
If, as is conjectured, the last term of A018890 is 8042, there are no more terms than those shown. - Robert Israel, Jul 14 2014

Examples

			a(1) = 7 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 1^3.
a(2) = 47 = 3^3 + 2^3 + 2^3 + 1^3 + 1^3 + 1^3 + 1^3.
a(3) = 61 = 3^3 + 2^3 + 2^3 + 2^3 + 2^3 + 1^3 + 1^3.
a(4) = 103 = 4^3 + 3^3 + 2^3 + 1^3 + 1^3 + 1^3 + 1^3.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 10^4 do
      m:= floor(n^(1/3));
      if m^3 = n then M[n]:= 1
      else
        M[n]:= 1 + min(seq(M[n-j^3],j=1..m));
      fi
    od:
    select(n -> M[n]=7 and isprime(n), [$1..10^4]); # Robert Israel, Jul 14 2014
Showing 1-5 of 5 results.