A163490 Least number k having n representations as the sum of the minimal number of cubes A002376(k).
1, 157, 221, 626, 894, 1488, 1489, 3020, 1912, 1938, 3685, 3659, 4982, 4369, 5279, 13127, 4882, 5305, 8042, 16116, 16620, 18884, 23604, 22514, 22542, 29094, 31353, 27660, 41388, 38883
Offset: 1
Examples
a(1) = 1 since 1 = 1^3 (1 way with minimal representation). a(2) = 157 since 157 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 5^3 (2 ways with minimal representation). a(3) = 221 since 221 = 1^3 + 1^3 + 1^3 + 1^3 + 1^3 + 6^3 = 1^3 + 1^3 + 3^3 + 4^3 + 4^3 + 4^3 = 2^3 + 2^3 + 2^3 + 2^3 + 4^3 + 5^3 (3 ways with minimal representation).
Links
- Eric Weisstein's World of Mathematics, Waring's Problem.
Crossrefs
Cf. A002376.
Programs
-
Mathematica
t=Table[r=PowersRepresentations[n,9,3]; Sort[Tally[9-Count[#,0]&/@r]][[1,2]],{n,1000}]; u=Union[t]; c=Complement[Range[Max[u]],u]; If[c=={},mx=u[[-1]],mx=c[[1]]-1]; Flatten[Table[Position[t,n,1,1],{n,mx}]]
Extensions
a(16)-a(30) from Alois P. Heinz, Feb 10 2011
Comments