A185673 Least number k having n representations as the sum of the minimal number of biquadrates A002377(k).
1, 259, 518, 777, 3402, 3645, 3726, 7045, 7243, 12683, 16441, 13723, 13792, 21631, 20202, 23002, 24135, 27162, 28870, 28215, 33230, 39629, 36510, 41561, 43241, 29563, 47401, 41310, 47150, 47790, 56749, 43962, 48750, 62681, 65069, 50442
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 1^4 (1 way with minimal representation) a(2) = 259 since 259 = 1^4 + 1^4 + 1^4 + 4^4 = 2^4 + 3^4 + 3^4 + 3^4 (2 ways with minimal representation) a(3) = 518 since 518 = 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 1^4 + 4^4 + 4^4 = 1^4 + 1^4 + 1^4 + 2^4 + 3^4 + 3^4 + 3^4 + 4^4 = 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 (3 ways with minimal representation)
Links
- Eric Weisstein's World of Mathematics, Waring's Problem.
Crossrefs
Cf. A002377.
Programs
-
Mathematica
t=Table[r=PowersRepresentations[n,19,4]; Sort[Tally[19-Count[#,0]&/@r]][[1,2]], {n,800}]; u=Union[t]; c=Complement[Range[Max[u]],u]; If[c=={}, mx=u[[-1]], mx=c[[1]]-1]; Flatten[Table[Position[t,n,1,1],{n,mx}]]
Extensions
a(10)-a(36) from Alois P. Heinz, Feb 10 2011
Comments