cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A186671 Total number of positive integers below 10^n requiring 13 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 6, 66, 706, 6945, 67173, 667369, 6667582, 66667813, 666668052, 6666668292
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A114322(n) + A186649(n) + A186651(n) + A186653(n) + A186655(n) + A186657(n) + A186659(n) + A186661(n) + A186663(n) + A186665(n) + A186667(n) + A186669(n) + a(n) + A186673(n) + A186675(n) + A186677(n) + A186680(n) + A186682(n) + A186684(n) = A002283(n).

Crossrefs

Extensions

a(5)-a(6) from Lars Blomberg, May 08 2011
a(7) from Charles R Greathouse IV, May 08 2011
a(8)-a(9) from Hiroaki Yamanouchi, Oct 13 2014
a(10)-a(11) from Giovanni Resta, Apr 29 2016

A186672 Total number of n-digit numbers requiring 13 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 6, 60, 640, 6239, 60228, 600196, 6000213, 60000231, 600000239, 6000000240
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A102831(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + a(n) + A186674(n) + A186676(n) + A186678(n) + A186681(n) + A186683(n) + A186685(n) = A052268(n), for n>1.

Crossrefs

Formula

a(n) = A186671(n) - A186671(n-1).

Extensions

a(5)-a(11) from Giovanni Resta, Apr 29 2016

A046045 Sum of 14 but no fewer nonzero fourth powers.

Original entry on oeis.org

14, 29, 44, 59, 74, 94, 109, 124, 139, 154, 174, 189, 204, 219, 224, 234, 254, 269, 284, 299, 314, 334, 349, 364, 379, 394, 414, 429, 444, 459, 464, 474, 494, 509, 524, 539, 554, 574, 589, 604, 619, 638, 654, 669, 684, 699, 704, 718, 734, 749, 764, 779, 798
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A047723 Sum of 12 but no fewer nonzero fourth powers.

Original entry on oeis.org

12, 27, 42, 57, 72, 92, 107, 122, 137, 152, 172, 187, 192, 202, 217, 232, 252, 267, 282, 297, 312, 332, 347, 362, 377, 392, 412, 427, 432, 442, 457, 472, 492, 497, 507, 522, 537, 552, 572, 587, 602, 617, 636, 652, 667, 672, 682, 697, 716, 732, 747, 762
Offset: 1

Views

Author

Arlin Anderson (starship1(AT)gmail.com)

Keywords

Crossrefs

Programs

  • Python
    from itertools import count, takewhile, combinations_with_replacement as mc
    def aupto(limit):
        qd = list(takewhile(lambda x: x <= limit, (k**4 for k in count(1))))
        ss = [set(sum(c) for c in mc(qd, i)) for i in range(13)]
        for i in range(11, 0, -1): ss[12] -= ss[i]
        return sorted(s for s in ss[12] if s <= limit)
    print(aupto(762)) # Michael S. Branicky, Dec 27 2021

Extensions

Typo in data corrected by D. S. McNeil, Aug 17 2010

A047724 Sum of 13 nonzero fourth powers.

Original entry on oeis.org

13, 28, 43, 58, 73, 88, 93, 103, 108, 118, 123, 133, 138, 148, 153, 163, 168, 173, 178, 183, 188, 193, 198, 203, 208, 213, 218, 228, 233, 243, 248, 253, 258, 263, 268, 273, 278, 283, 293, 298, 308, 313, 323, 328, 333, 338, 343, 348, 358, 363, 373, 378, 388
Offset: 1

Views

Author

Arlin Anderson (starship1(AT)gmail.com)

Keywords

Crossrefs

Programs

  • Mathematica
    Union[Total/@Tuples[Range[3]^4,13]] (* Harvey P. Dale, Nov 04 2015 *)

A085304 Least number of 4th powers required to represent n!.

Original entry on oeis.org

1, 1, 2, 6, 9, 10, 15, 15, 9, 10, 15, 6, 12, 12
Offset: 0

Views

Author

Labos Elemer, Jun 30 2003

Keywords

Examples

			n=6: 6!=720=625+81+14,length-of-solution=16>=a(6)
but 6!=720=2.256+13.16 seems shortest solution a(6)=15
after, see also A046046
n=7: 7!=5040=3.1296+4.256+8.16 so a(7)<=15 (uncertain);
n=8: a(8)<=9 because 8!=4.10000+1.256+4.16.
		

Crossrefs

Formula

"Shortest" solutions to n!=Sum[x(j)^4], j=1, .., m[n] with minimal value of m[n]: a(n)=Min{m[n]}. Per analogiam A084355.

Extensions

a(7)-a(11) from John W. Layman, Aug 13 2004
a(12) from Sean A. Irvine, Feb 11 2010
a(13) from Sean A. Irvine, Feb 15 2010
Showing 1-6 of 6 results.