cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A002377 Least number of 4th powers needed to represent n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 5, 1, 2, 3
Offset: 1

Views

Author

Keywords

Comments

No terms are greater than 19, see A002804. - Charles R Greathouse IV, Aug 01 2013
Seven values of n need the maximum of 19 fourth powers. These form the arithmetic progression {79, 159, 239, 319, 399, 479, 559} each term being congruent to 79 mod 80. For n < 625 the available fourth powers are congruent to 1 or 16 mod 80, requiring 4*16 + 15*1 to sum to 79. However, 625 = 5^4 is congruent to 65 and 1*65 + 14*1 = 79. So for n > 625 and congruent to 79, only 15 fourth powers are needed to satisfy the mod 80 arithmetic. - Peter Munn, Apr 12 2017

References

  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 82.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    Cnt4[n_] := Module[{k = 1}, While[Length[PowersRepresentations[n, k, 4]] == 0, k++]; k]; Array[Cnt4, 100] (* T. D. Noe, Apr 01 2011 *)
    seq[n_] := Module[{v = Table[0, {n}], s, p}, s = Sum[x^(k^4), {k, 1, n^(1/4)}] + O[x]^(n+1); p=1; For[k=1, k <= 19, k++, p *= s; For[i=1, i <= n, i++, If[v[[i]]==0 && Coefficient[p, x, i] != 0, v[[i]] = k]]]; v];
    seq[100] (* Jean-François Alcover, Sep 28 2019, after Andrew Howroyd *)
  • PARI
    seq(n)={my(v=vector(n), s=sum(k=1, sqrtint(sqrtint(n)), x^(k^4)) + O(x*x^n), p=1); for(k=1, 19, p*=s; for(i=1, n, if(!v[i] && polcoeff(p,i), v[i]=k))); v} \\ Andrew Howroyd, Jul 06 2018
    
  • Python
    from itertools import count
    from sympy.solvers.diophantine.diophantine import power_representation
    def A002377(n):
        if n == 1: return 1
        for k in count(1):
            try:
                next(power_representation(n,4,k))
            except:
                continue
            return k # Chai Wah Wu, Jun 25 2024

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A186680 Total number of positive integers below 10^n requiring 17 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 3, 33, 63, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A114322(n) + A186649(n) + A186651(n) + A186653(n) + A186655(n) + A186657(n) + A186659(n) + A186661(n) + A186663(n) + A186665(n) + A186667(n) + A186669(n) + A186671(n) + A186673(n) + A186675(n) + A186677(n) + a(n) + A186682(n) + A186684(n) = A002283(n)
a(n) = 65 for n >= 5. - Nathaniel Johnston, May 09 2011
Continued fraction expansion of (826055+sqrt(4229))/2503382. - Bruno Berselli, May 10 2011

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 3, 33, 63}, 100, 65] (* Paolo Xausa, Jul 31 2024 *)

Formula

G.f.: x^2*(3+30*x+30*x^2+2*x^3)/(1-x). - Bruno Berselli, May 10 2011

Extensions

a(5)-a(6) from Lars Blomberg, May 08 2011
a(7) from Charles R Greathouse IV, May 08 2011
Terms after a(7) from Nathaniel Johnston, May 09 2011

A186685 Total number of n-digit numbers requiring 19 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 1, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 1, 6}, 100] (* Paolo Xausa, Jul 26 2024 *)

Formula

a(n) = A186684(n) - A186684(n-1).
A161905(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + A186681(n) + A186683(n) + a(n) = A052268(n).
a(n) = 0 for n >= 4. - Nathaniel Johnston, May 09 2011

A186681 Total number of n-digit numbers requiring 17 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 3, 30, 30, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A161905(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + a(n) + A186683(n) + A186685(n) = A052268(n)
a(n) = 0 for n >= 6. - Nathaniel Johnston, May 09 2011

Crossrefs

Formula

a(n) = A186680(n) - A186680(n-1).

A186683 Total number of n-digit numbers requiring 18 positive biquadrates in their representation as sum of biquadrates.

Original entry on oeis.org

0, 2, 17, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Martin Renner, Feb 25 2011

Keywords

Comments

A161905(n) + A186650(n) + A186652(n) + A186654(n) + A186656(n) + A186658(n) + A186660(n) + A186662(n) + A186664(n) + A186666(n) + A186668(n) + A186670(n) + A186672(n) + A186674(n) + A186676(n) + A186678(n) + A186681(n) + a(n) + A186685(n) = A052268(n)
a(n) = 0 for n >= 5. - Nathaniel Johnston, May 09 2011

Crossrefs

Programs

  • Mathematica
    PadRight[{0, 2, 17, 5}, 100] (* Paolo Xausa, Jul 30 2024 *)

Formula

a(n) = A186682(n) - A186682(n-1).

A046048 Numbers that are the sum of 17 but no fewer nonzero fourth powers.

Original entry on oeis.org

47, 62, 77, 127, 142, 157, 207, 222, 237, 287, 302, 317, 367, 382, 397, 447, 462, 477, 527, 542, 557, 607, 622, 687, 702, 752, 767, 782, 847, 862, 927, 942, 992, 1007, 1022, 1087, 1102, 1167, 1182, 1232, 1247, 1327, 1407, 1487, 1567, 1647, 1727, 1807, 2032
Offset: 1

Views

Author

Keywords

Comments

a(65) = 13792 is the last term of this sequence; see A099591 for further references.

Examples

			62 is the sum of 17 4th powers and no fewer, so 62 is a term.
63 is the sum of 18 4th powers and no fewer, so 63 is not a term, although it is a term of A099591.
		

Crossrefs

Programs

  • Mathematica
    lim = 2100; f[n_] := f[n] = (k = 0; While[k++; k <= 17 && PowersRepresentations[n, k, 4] == {}]; k); Select[Range[lim], f[#] == 17 &] (* Jean-François Alcover, Sep 08 2011 *)

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A161884 Smallest k such that n^4 = a_1^4+...+a_k^4 and all a_i are positive integers less than n.

Original entry on oeis.org

16, 6, 16, 5, 6, 6, 16, 6, 5, 7, 6, 6, 6, 5, 16, 6, 6, 6, 5, 6, 7, 6, 6, 5, 6, 6, 6, 6, 5, 5, 16, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 7, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 5, 6, 16, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6
Offset: 2

Views

Author

Dmitry Kamenetsky, Jun 21 2009

Keywords

Comments

It follows from Balasubramanian, Deshouillers, & Dress' result g(4) = 19 that a(n) <= 20. Deshouillers, Hennecart, & Landreau and Deshouillers, Kawada, & Wooley together give an effective proof that G(4) = 16, from which it can be determined by checking the 96 exceptions that a(n) <= 17. Probably a(n) <= 16. [Charles R Greathouse IV, Jul 31 2011]

References

  • J.-M. Deshouillers, K. Kawada, and T. D. Wooley, "On sums of sixteen biquadrates", Mem. Soc. Math. Fr. 100 (2005), 120 pp.

Crossrefs

Programs

  • PARI
    a(n, verbose=0, m=4)={N=n^m; for(k=3, 99, forvec(v=vector(k-1, i, [1, n\sqrtn((k+1-i)*0.99999, m)]), ispower(N-sum(i=1, k-1, v[i]^m), m, &K)&&K>0&&!if(verbose,print1("/*"n" "v"*/"))&&return(k), 1))} \\ M. F. Hasler, Dec 17 2014

Extensions

a(51)-a(63) from M. F. Hasler, Dec 17 2014
a(64)-a(86) from Giovanni Resta, Aug 17 2015

A046047 Sum of 16 but no fewer nonzero fourth powers.

Original entry on oeis.org

31, 46, 61, 76, 111, 126, 141, 156, 191, 206, 221, 236, 271, 286, 301, 316, 351, 366, 381, 396, 431, 446, 461, 476, 496, 511, 526, 541, 556, 591, 606, 621, 671, 686, 701, 736, 751, 766, 781, 831, 846, 861, 911, 926, 941, 976, 991, 1006, 1021, 1071, 1086
Offset: 1

Views

Author

Keywords

Comments

What is the least k such that the sequence "Sum of k but no fewer nonzero fourth powers." is finite? - David A. Corneth, Jun 24 2018
13792 is the last number requiring 17 nonzero fourth powers. This sequence is infinite since numbers of the form 31*16^e always require 16 but no fewer. - Jianing Song, Jul 08 2018

Crossrefs

Programs

  • Mathematica
    Select[Range[  1100], (pr = PowersRepresentations[#, 16, 4]; test = pr != {} && Count[pr, r_ /; (Times @@ r) == 0] == 0; If[test, Print[#]]; test) &] (* Jean-François Alcover, Oct 30 2012 *)

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com)

A046049 Sum of 18 but no fewer nonzero fourth powers.

Original entry on oeis.org

63, 78, 143, 158, 223, 238, 303, 318, 383, 398, 463, 478, 543, 558, 623, 703, 783, 863, 943, 1008, 1023, 1103, 1183, 1248
Offset: 1

Views

Author

Keywords

Comments

See A099591 for references that show that this sequence is full.

Crossrefs

Programs

  • Mathematica
    Select[ Range[1300], (pr = PowersRepresentations[#, 18, 4]; test = pr != {} && FreeQ[pr, r_List /; (Times @@ r) == 0]; If[test, Print[#]]; test) &] (* Jean-François Alcover, Oct 30 2012 *)

Extensions

More terms from Arlin Anderson (starship1(AT)gmail.com).

A374014 Expansion of (Sum_{k>=0} x^(k^4))^16.

Original entry on oeis.org

1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 17, 240, 1680, 7280, 21840, 48048, 80080, 102960, 102960, 80080, 48048, 21840, 7280, 1680, 240, 16, 120, 1680, 10920, 43680, 120120, 240240, 360360, 411840, 360360, 240240, 120120, 43680, 10920, 1680, 120, 0
Offset: 0

Views

Author

Seiichi Manyama, Jun 25 2024

Keywords

Comments

Number of ways to write n as an ordered sum of 16 fourth powers (A000583).

Crossrefs

Programs

  • PARI
    my(N=50, x='x+O('x^N)); Vec(sum(k=0, sqrtnint(N, 4), x^k^4)^16)

Formula

a(A099591(n)) = 0.
a(n) > 0 for n > 13792.
Showing 1-10 of 10 results.