cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018903 Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(1,5).

Original entry on oeis.org

1, 5, 26, 136, 712, 3728, 19520, 102208, 535168, 2802176, 14672384, 76825600, 402264064, 2106281984, 11028635648, 57746685952, 302365573120, 1583206694912, 8289777876992, 43405840482304, 227275931385856, 1190032226385920, 6231089632772096, 32626408891088896
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of compositions of n when there are 5 types of ones. - Milan Janjic, Aug 13 2010
a(n)/a(n-1) tends to (6 + sqrt(20))/2 = 5.236067.... - Gary W. Adamson, Jul 30 2013
Number of words of length n over {0,1,...,6} in which each 1 is followed by at least one zero. - Milan Janjic, Jan 24 2017

Programs

  • Mathematica
    LinearRecurrence[{6, -4}, {1, 5}, 24] (* or *)
    CoefficientList[Series[(1 - x)/(1 - 6 x + 4 x^2), {x, 0, 23}], x] (* or *)
    a = {1, 5}; Do[AppendTo[a, 6 a[[n - 1]] - 4 a[[n - 2]]], {n, 3, 24}];
    a (* or *)
    S[a_, b_, n_] := Block[{s = {a, b}, k}, Do[k = Last@ s + 1; While[k/s[[i - 1]] <= s[[i - 1]]/s[[i - 2]], k++]; AppendTo[s, k], {i, 3, n}]; s]; S[1, 5, 10] (* Michael De Vlieger, Feb 15 2016 *)
  • PARI
    S(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=a[n-1]^2\a[n-2]+1); a
    S(1, 5, 40) \\ Colin Barker, Feb 15 2016
    
  • PARI
    Vec((1-x)/(1-6*x+4*x^2) + O(x^40)) \\ Colin Barker, Feb 15 2016

Formula

a(n) = (a(1)+1)*a(n-1) - (a(1)-1)*a(n-2) = 6*a(n-1) - 4*a(n-2).
G.f.: (1 - x)/(1 - 6*x + 4*x^2). - Colin Barker, Feb 04 2012
a(n) = 2^(n-1)*A000045(2*n+3). - Sergio Falcon, Jan 25 2017
a(n) = ((3-sqrt(5))^n*(-2+sqrt(5)) + (2+sqrt(5))*(3+sqrt(5))^n) / (2*sqrt(5)). - Colin Barker, Jan 20 2017
Equivalent to the first formula: a(n)=a(1)+a(2)+....+a(n-2)+5*a(n-1). - Arie Bos, May 05 2017
a(n) = Sum_{k>=1} binomial(k+n-1,n) * A000045(k) / 2^(k+1). - Diego Rattaggi, Jun 25 2020