A018918 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(3,6).
3, 6, 11, 20, 36, 64, 113, 199, 350, 615, 1080, 1896, 3328, 5841, 10251, 17990, 31571, 55404, 97228, 170624, 299425, 525455, 922110, 1618191, 2839728, 4983376, 8745216, 15346785, 26931731, 47261894, 82938843, 145547524, 255418100, 448227520, 786584465
Offset: 0
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- Index entries for Pisot sequqences
Programs
-
Magma
Tiv:=[3,6]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2)-1): n in [1..40]]; // Bruno Berselli, Feb 17 2016
-
Mathematica
RecurrenceTable[{a[1] == 3, a[2] == 6, a[n] == Ceiling[a[n-1]^2/a[n-2] - 1]}, a, {n, 40}] (* Vincenzo Librandi, Feb 17 2016 *)
-
PARI
T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a T(3, 6, 50) \\ Colin Barker, Jul 29 2016
Formula
Conjectures from Colin Barker, Dec 21 2012: (Start)
a(n) = 3*a(n-1)-3*a(n-2)+2*a(n-3)-a(n-4).
G.f.: -(x^3-2*x^2+3*x-3) / ((x-1)*(x^3-x^2+2*x-1)). (End)
a(n) = ceiling( a(n-1)^2/a(n-2)-1 ), by definition. - Bruno Berselli, Feb 16 2016
Comments