A018923 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(16,32).
16, 32, 63, 124, 244, 480, 944, 1856, 3649, 7174, 14104, 27728, 54512, 107168, 210687, 414200, 814296, 1600864, 3147216, 6187264, 12163841, 23913482, 47012668, 92424472, 181701728, 357216192, 702268543, 1380623604, 2714234540, 5336044608, 10490387488
Offset: 0
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- Index entries for Pisot sequences
Crossrefs
Is this the same sequence as A001949?
Programs
-
Mathematica
T[a_, b_, n_] := Block[{s = {a, b}, k}, Do[k = 2 Last@ s; While[k/s[[i - 1]] >= s[[i - 1]]/s[[i - 2]], k--]; AppendTo[s, k], {i, 3, n}]; s]; T[16, 32, 23] (* or *) a = {16, 32}; Do[AppendTo[a, Ceiling[a[[n - 1]]^2/a[[n - 2]]] - 1], {n, 3, 23}]; a (* Michael De Vlieger, Feb 15 2016 *) RecurrenceTable[{a[1] == 16, a[2] == 32, a[n] == Ceiling[a[n-1]^2/a[n-2] - 1]}, a, {n, 40}] (* Vincenzo Librandi, Feb 17 2016 *)
-
PARI
T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a T(16, 32, 30) \\ Colin Barker, Feb 16 2016
Formula
Empirical G.f.: -(8*x^5+4*x^4+2*x^3+x^2-16) / ((x-1)*(x^5+x^4+x^3+x^2+x-1)). - Colin Barker, Dec 21 2012
a(n+1) = ceiling(a(n)^2/a(n-1))-1 for n>0. - Bruno Berselli, Feb 15 2016
Comments