cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A018923 Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(16,32).

Original entry on oeis.org

16, 32, 63, 124, 244, 480, 944, 1856, 3649, 7174, 14104, 27728, 54512, 107168, 210687, 414200, 814296, 1600864, 3147216, 6187264, 12163841, 23913482, 47012668, 92424472, 181701728, 357216192, 702268543, 1380623604, 2714234540, 5336044608, 10490387488
Offset: 0

Views

Author

Keywords

Comments

Not to be confused with the Pisot T(16,32) sequence, which is essentially A000079. - R. J. Mathar, Feb 13 2016

Crossrefs

Is this the same sequence as A001949?

Programs

  • Mathematica
    T[a_, b_, n_] := Block[{s = {a, b}, k}, Do[k = 2 Last@ s; While[k/s[[i - 1]] >= s[[i - 1]]/s[[i - 2]], k--]; AppendTo[s, k], {i, 3, n}]; s]; T[16, 32, 23] (* or *)
    a = {16, 32}; Do[AppendTo[a, Ceiling[a[[n - 1]]^2/a[[n - 2]]] - 1], {n, 3, 23}]; a (* Michael De Vlieger, Feb 15 2016 *)
    RecurrenceTable[{a[1] == 16, a[2] == 32, a[n] == Ceiling[a[n-1]^2/a[n-2] - 1]}, a, {n, 40}] (* Vincenzo Librandi, Feb 17 2016 *)
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
    T(16, 32, 30) \\ Colin Barker, Feb 16 2016

Formula

Empirical G.f.: -(8*x^5+4*x^4+2*x^3+x^2-16) / ((x-1)*(x^5+x^4+x^3+x^2+x-1)). - Colin Barker, Dec 21 2012
a(n+1) = ceiling(a(n)^2/a(n-1))-1 for n>0. - Bruno Berselli, Feb 15 2016