A019269 Let Dedekind's psi(m) = product of (p+1)p^(e-1) for primes p, where p^e is a factor of m. Iterating psi(m) eventually results in a number of form 2^a*3^b. a(n) is the number of steps to reach such a number.
0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 1, 1, 0, 2, 2, 0, 1, 2, 1, 1, 0, 1, 1, 1, 0, 3, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 0, 2, 2, 1, 2, 1, 0, 1, 1, 2, 2, 2, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 1, 1, 0, 4, 3, 2, 2, 1, 2, 2, 1, 0, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 0, 3, 2, 1
Offset: 1
Keywords
References
- Peter Giblin, "Primes and Programming - an Introduction to Number Theory with Computation", page 118.
- R. K. Guy, "Unsolved Problems in Number Theory", section B41.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a019269 n = snd $ until ((== 1) . a065333 . fst) (\(x, i) -> (a001615 x, i+1)) (n, 0) -- Reinhard Zumkeller, Apr 12 2012
-
Mathematica
psi[n_] := Module[{pp, ee}, {pp, ee} = Transpose[FactorInteger[n]]; If[Max[pp] == 3, n, Times @@ (pp+1)*Times @@ (pp^(ee-1))]]; a[n_] := Length[NestWhileList[psi, n, FactorInteger[#][[-1, 1]] > 3&]] - 1; a /@ Range[99] (* Jean-François Alcover, Jan 18 2020 *)
Comments