A019278 Numbers j such that sigma(sigma(j)) = k*j for some k.
1, 2, 4, 8, 15, 16, 21, 24, 42, 60, 64, 84, 160, 168, 240, 336, 480, 504, 512, 960, 1023, 1344, 1536, 4092, 4096, 10752, 13824, 16368, 29127, 32256, 32736, 47360, 57120, 58254, 61440, 65472, 65536, 86016, 116508, 217728, 262144, 331520, 343976, 466032, 550095
Offset: 1
Keywords
Links
- Giovanni Resta, Table of n, a(n) for n = 1..145 (first 130 terms from Jud McCranie)
- G. L. Cohen and H. J. J. te Riele, Iterating the sum-of-divisors function, Experimental Mathematics, 5 (1996), pp. 93-100.
- Michel Marcus, List of terms, grouped by quotient, not exhaustive.
Crossrefs
Programs
-
Magma
[m: m in [1..560000]| IsIntegral(DivisorSigma(1,DivisorSigma(1,m))/m)]; // Marius A. Burtea, Nov 16 2019
-
Mathematica
Select[Range[100000], Mod[DivisorSigma[1, DivisorSigma[1, #]], #] == 0 &] (* Carl Najafi, Aug 22 2011 *)
-
PARI
is_A019278(n)=sigma(sigma(n))%n==0 \\ M. F. Hasler, Jul 02 2016
-
Python
from sympy.ntheory import divisor_sigma as D print([i for i in range(1, 10000) if D(D(i, 1), 1)%i==0]) # Indranil Ghosh, Mar 17 2017
Extensions
Simpler definition from M. F. Hasler, Jul 02 2016
Comments