A019284
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,7)-perfect numbers.
Original entry on oeis.org
24, 1536, 47360, 343976, 572941926400
Offset: 1
Cf.
A000668,
A019278,
A019279,
A019281,
A019282,
A019283,
A019285,
A019286,
A019287,
A019288,
A019289,
A019290,
A019291.
-
Select[Range[50000], DivisorSigma[1, DivisorSigma[1, #]]/# == 7 &] (* Robert Price, Apr 07 2019 *)
-
isok(n) = sigma(sigma(n))/n == 7; \\ Michel Marcus, May 12 2016
A019281
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,3)-perfect numbers.
Original entry on oeis.org
Cf.
A019278,
A019279,
A019282,
A019283,
A019284,
A019285,
A019286,
A019287,
A019288,
A019289,
A019290,
A019291.
A019282
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,4)-perfect numbers.
Original entry on oeis.org
15, 1023, 29127, 355744082763
Offset: 1
Cf.
A019278,
A019279,
A019281,
A019283,
A019284,
A019285,
A019286,
A019287,
A019288,
A019289,
A019290,
A019291.
-
Select[Range[100000], DivisorSigma[1, DivisorSigma[1, #]]/# == 4 &] (* Robert Price, Apr 07 2019 *)
-
isok(n) = sigma(sigma(n))/n == 4; \\ Michel Marcus, May 12 2016
A019286
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,9)-perfect numbers.
Original entry on oeis.org
168, 10752, 331520, 691200, 1556480, 1612800, 106151936, 5099962368, 4010593484800
Offset: 1
Cf.
A000668,
A019278,
A019279,
A019281,
A019282,
A019283,
A019284,
A019285,
A019286,
A019287,
A019288,
A019289,
A019290,
A019291.
A019287
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,10)-perfect numbers.
Original entry on oeis.org
480, 504, 13824, 32256, 32736, 1980342, 1396617984, 3258775296, 14763499520, 38385098752
Offset: 1
Cf.
A019278,
A019279,
A019281,
A019282,
A019283,
A019284,
A019285,
A019286,
A019288,
A019289,
A019290,
A019291.
More terms from
Jud McCranie, Nov 13 2001; a(9) Jan 29 2012, a(10) Feb 08 2012
A019288
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,11)-perfect numbers.
Original entry on oeis.org
4404480, 57669920, 238608384
Offset: 1
Cf.
A019278,
A019279,
A019281,
A019282,
A019283,
A019284,
A019285,
A019286,
A019287,
A019289,
A019290,
A019291.
A019289
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,12)-perfect numbers.
Original entry on oeis.org
2200380, 8801520, 14913024, 35206080, 140896000, 459818240, 775898880, 2253189120, 16785793024, 22648550400, 36051025920, 51001180160, 144204103680
Offset: 1
Cf.
A019278,
A019279,
A019281,
A019282,
A019283,
A019284,
A019285,
A019286,
A019287,
A019288,
A019290,
A019291.
More terms from
Jud McCranie, Nov 13 2001, a(9) Feb 01 2012, a(10)-a(13) on Feb 08 2012
A019290
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,13)-perfect numbers.
Original entry on oeis.org
57120, 932064, 3932040, 251650560
Offset: 1
Cf.
A019276,
A019278,
A019279,
A019281,
A019282,
A019283,
A019284,
A019285,
A019286,
A019287,
A019288,
A019289,
A019291.
A019291
Let sigma_m (n) be result of applying sum-of-divisors function m times to n; call n (m,k)-perfect if sigma_m (n) = k*n; sequence gives the (2,14)-perfect numbers.
Original entry on oeis.org
217728, 1278720, 2983680, 5621760, 14008320, 298721280, 955367424, 1874780160, 4874428416, 1957928934528
Offset: 1
Cf.
A019276,
A019278,
A019279,
A019281,
A019282,
A019283,
A019284,
A019285,
A019286,
A019287,
A019288,
A019289,
A019290.
Showing 1-9 of 9 results.
Comments