A019299 First n elements of Thue-Morse sequence A010059 read as a binary number.
1, 2, 4, 9, 18, 37, 75, 150, 300, 601, 1203, 2406, 4813, 9626, 19252, 38505, 77010, 154021, 308043, 616086, 1232173, 2464346, 4928692, 9857385, 19714771, 39429542, 78859084, 157718169, 315436338, 630872677, 1261745355, 2523490710, 5046981420
Offset: 0
Keywords
Programs
-
Maple
a:= n-> add((1+(-1)^irem(add(j, j=convert(n-i, base, 2)), 2))*2^i/2, i=0..n): seq(a(n), n=0..32); # Lorenzo Sauras Altuzarra, Jan 31 2023
Formula
a(n) = Sum_{k=0..n} (1+(-1)^A010060(n-k))*2^k/2. - Paul Barry, Jan 06 2005
From Lorenzo Sauras Altuzarra, Jan 31 2023: (Start)
a(n+1) = 2*a(n) + 1 if a(n) is evil; a(n+1) = 2*a(n) otherwise (see also A125050).
a(n) = floor((1-c)*2^(n+1)), where c = A014571 is the Thue - Morse constant. (End)