cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019310 Number of words of length n (n >= 1) over a two-letter alphabet having a minimal period of size n-1.

Original entry on oeis.org

0, 2, 2, 6, 10, 22, 38, 82, 154, 318, 614, 1250, 2462, 4962, 9842, 19766, 39378, 78910, 157502, 315322, 630030, 1260674, 2520098, 5041446, 10080430, 20163322, 40321682, 80648326, 161286810, 322583462, 645147158, 1290314082, 2580588786, 5161216950
Offset: 1

Views

Author

Keywords

Examples

			G.f. = 2*x^2 + 2*x^3 + 6*x^4 + 10*x^5 + 22*x^6 + 38*x^7 + 82*x^8 + ...
a(4) = 6 because we have: {0, 0, 1, 0}, {0, 1, 0, 0}, {0, 1, 1, 0}, {1, 0, 0, 1}, {1, 0, 1, 1}, {1, 1, 0, 1}.  These are precisely the binary words of length 4 with autocorrelation polynomial equal to 1 + z^3. - _Geoffrey Critzer_, Apr 13 2022
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember;
        2*procname(n-1)+(-1)^n*procname(ceil(n/2))
    end proc:
    f(1):= 0: f(2):= 2:
    map(f, [$1..100]); # Robert Israel, Jul 15 2018
  • PARI
    a(n) = if (n==1, 0, if (n==2, 2, 2*a(n-1) + (-1)^n*a(ceil(n/2)))) \\ Michel Marcus, May 25 2013

Formula

a(n) = 2*a(n-1) + (-1)^n * a(ceiling(n/2)) for n >= 3.
a(n) = a(n-1) + 2*a(n-2) if n >= 4 even. a(n) = a(n-1) + 2*a(n-2) + 2*a((n-1)/2) if n>=7 == 3 (mod 4). - Michael Somos, Jan 23 2014