cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A070683 Smallest m in range 1..phi(2n+1) such that 12^m == 1 mod 2n+1, or 0 if no such number exists.

Original entry on oeis.org

0, 0, 4, 6, 0, 1, 2, 0, 16, 6, 0, 11, 20, 0, 4, 30, 0, 12, 9, 0, 40, 42, 0, 23, 42, 0, 52, 4, 0, 29, 15, 0, 4, 66, 0, 35, 36, 0, 6, 26, 0, 41, 16, 0, 8, 6, 0, 12, 16, 0, 100, 102, 0, 53, 54, 0, 112, 44, 0, 48, 11, 0, 100, 126, 0, 65, 6, 0, 136, 138, 0, 2, 4, 0, 148
Offset: 0

Views

Author

N. J. A. Sloane and Amarnath Murthy, May 08 2002

Keywords

Comments

a(n)=2*n if 2*n+1 is in A019340, otherwise a(n)<2*n. - Robert Israel, Apr 17 2019

Crossrefs

Programs

  • Maple
    f:= proc(n)
      if n mod 3 = 1 then 0 else numtheory:-order(12,2*n+1) fi
    end proc:
    0, seq(f(n),n=1..100); # Robert Israel, Apr 16 2019
  • Mathematica
    a[n_] := Module[{s}, s = SelectFirst[Range[EulerPhi[2n+1]], PowerMod[12, #, 2n+1] == 1&]; If[s === Missing["NotFound"], 0, s]];
    a /@ Range[0, 100] (* Jean-François Alcover, Jun 04 2020 *)

A061325 Primes with 12 as smallest positive primitive root.

Original entry on oeis.org

4111, 7841, 10111, 15391, 15991, 16061, 20011, 21031, 22699, 32299, 32957, 35911, 43963, 45127, 45631, 47431, 49831, 51199, 53731, 58111, 59671, 60331, 64231, 74311, 76039, 78079, 81331, 81761, 83311, 83431, 98911, 102871, 104729, 108907
Offset: 1

Views

Author

Klaus Brockhaus, Apr 24 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Prime[ Select[ Range[15000], PrimitiveRoot[ Prime[ # ] ] == 12 & ] ]
    (* or *)
    Select[ Prime@Range@15000, PrimitiveRoot@# == 12 &] (* Robert G. Wilson v, May 11 2001 *)
Showing 1-2 of 2 results.