cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A061326 Primes with 13 as smallest positive primitive root.

Original entry on oeis.org

457, 479, 1319, 1321, 1399, 2351, 2953, 3671, 3881, 3911, 4129, 4919, 5519, 5569, 6359, 6599, 6961, 7559, 7561, 8521, 8689, 8951, 9241, 9601, 9769, 10369, 11113, 11251, 12007, 12049, 12239, 12433, 12721, 12799, 12889, 13151, 14159, 14519
Offset: 1

Views

Author

Klaus Brockhaus, Apr 24 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Prime[ Select[ Range[2000], PrimitiveRoot[ Prime[ # ] ] == 13 & ] ]
    (* or *)
    Select[ Prime@Range@2000, PrimitiveRoot@# == 13 &] (* Robert G. Wilson v, May 11 2001 *)

A241047 Primes having primitive roots 2, 3, 5, 7, 11, and 13.

Original entry on oeis.org

293, 2477, 4373, 6173, 7013, 9173, 9677, 10853, 13037, 13397, 13613, 13877, 14957, 15413, 17093, 17597, 18413, 18917, 19157, 22277, 22613, 24317, 26813, 27653, 27893, 29333, 30197, 31517, 33893, 34613, 34877, 35573, 37253, 40493, 41117, 41333, 42437
Offset: 1

Views

Author

T. D. Noe, Apr 16 2014

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[p_, n_] := MultiplicativeOrder[p, n] == n - 1; Select[Prime[Range[4500]], fQ[2, #] && fQ[3, #] && fQ[5, #] && fQ[7, #] && fQ[11, #] && fQ[13, #] &]

A241048 Primes having primitive roots 2, 3, 5, 7, 11, 13, and 17.

Original entry on oeis.org

2477, 9173, 10853, 13877, 14957, 15413, 22277, 22613, 24317, 27653, 30197, 34877, 37253, 41117, 41333, 42437, 42677, 43973, 48677, 51413, 55733, 61613, 62597, 63773, 66293, 72533, 73757, 74093, 76733, 79397, 79757, 82997, 86357, 90173, 92237, 92333, 95597
Offset: 1

Views

Author

T. D. Noe, Apr 16 2014

Keywords

Crossrefs

Programs

  • Mathematica
    fQ[p_, n_] := MultiplicativeOrder[p, n] == n - 1; Select[Prime[Range[10000]], fQ[2, #] && fQ[3, #] && fQ[5, #] && fQ[7, #] && fQ[11, #] && fQ[13, #] && fQ[17, #] &]
Showing 1-3 of 3 results.