A019472 Weak preference orderings of n alternatives, i.e., orderings that have indifference between at least two alternatives.
0, 0, 1, 7, 51, 421, 3963, 42253, 505515, 6724381, 98618763, 1582715773, 27612565995, 520631327581, 10554164679243, 228975516609853, 5294731892093355, 130015079601039901, 3379132289551117323, 92679942218919579133, 2675254894236207563115, 81073734056332364441821
Offset: 0
Links
- Wikipedia, Weak ordering
- Wikipedia, Permutation pattern
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Crossrefs
Programs
-
Mathematica
a[n_] := Sum[(-1)^(j-i)*Binomial[j, i]*i^n, {i, 0, n-1}, {j, 0, n-1}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Feb 26 2016, after Peter Luschny *)
-
Sage
def A019472(n): return add(add((-1)^(j-i)*binomial(j, i)*i^n for i in range(n)) for j in range(n)) [A019472(n) for n in range(21)] # Peter Luschny, Jul 22 2014
Formula
a(n) = A000670(n) - n!. - corrected by Eugene McDonnell, May 12 2000
a(n) = Sum_{j=0..n-1} Sum_{i=0..n-1} (-1)^(j-i)*C(j, i)*i^n. - Peter Luschny, Jul 22 2014
Comments