cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A261982 Number of compositions of n with some part repeated.

Original entry on oeis.org

0, 0, 1, 1, 5, 11, 21, 51, 109, 229, 455, 959, 1947, 3963, 7999, 16033, 32333, 64919, 130221, 260967, 522733, 1045825, 2093855, 4189547, 8382315, 16768455, 33543127, 67093261, 134193413, 268404995, 536829045, 1073686083, 2147408773, 4294869253, 8589803783
Offset: 0

Views

Author

Alois P. Heinz, Sep 07 2015

Keywords

Comments

Also compositions matching the pattern (1,1). - Gus Wiseman, Jun 23 2020

Examples

			a(2) = 1: 11.
a(3) = 1: 111.
a(4) = 5: 22, 211, 121, 112, 1111.
		

Crossrefs

Row sums of A261981 and of A262191.
Cf. A262047.
The version for patterns is A019472.
The (1,1)-avoiding version is A032020.
The case of partitions is A047967.
(1,1,1)-matching compositions are counted by A335455.
Patterns matched by compositions are counted by A335456.
(1,1)-matching compositions are ranked by A335488.

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(k<0 or n<0, 0,
          `if`(k=0, `if`(n=0, 1, 0), b(n-k, k) +k*b(n-k, k-1)))
        end:
    a:= n-> ceil(2^(n-1))-add(b(n, k), k=0..floor((sqrt(8*n+1)-1)/2)):
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, k_] := b[n, k] = If[k<0 || n<0, 0, If[k==0, If[n==0, 1, 0], b[n-k, k] + k*b[n-k, k-1]]]; a[n_] := Ceiling[2^(n-1)]-Sum[b[n, k], {k, 0, Floor[ (Sqrt[8n+1]-1)/2]}]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 08 2017, translated from Maple *)
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],Length[#]>Length[Split[#]]&]],{n,0,10}] (* Gus Wiseman, Jun 24 2020 *)

Formula

a(n) = A011782(n) - A032020(n).
G.f.: (1 - x) / (1 - 2*x) - Sum_{k>=0} k! * x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 30 2020

A336103 Number of separable multisets of size n covering an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 5, 13, 24, 56, 108, 236, 464, 976, 1936, 3984, 7936, 16128, 32192, 64960, 129792, 260864, 521472, 1045760, 2091008, 4188160, 8375296, 16763904, 33525760, 67080192, 134156288, 268374016, 536739840, 1073610752, 2147205120, 4294688768, 8589344768, 17179279360, 34358493184
Offset: 0

Views

Author

Gus Wiseman, Jul 09 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of its remaining multiplicities plus one. Hence a(n) is the number of compositions of n whose greatest part is at most one more than the sum of its other parts. For example, the a(1) = 1 through a(5) = 13 compositions are:
(1) (11) (12) (22) (23)
(21) (112) (32)
(111) (121) (113)
(211) (122)
(1111) (131)
(212)
(221)
(311)
(1112)
(1121)
(1211)
(2111)
(11111)

Examples

			The a(1) = 1 through a(5) = 13 separable multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,2}
              {1,2,2}  {1,1,2,3}  {1,1,1,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,2,2}
                       {1,2,3,3}  {1,1,2,2,3}
                       {1,2,3,4}  {1,1,2,3,3}
                                  {1,1,2,3,4}
                                  {1,2,2,2,3}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
		

Crossrefs

The inseparable version is A336102.
The strong (weakly decreasing multiplicities) case is A336106.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Inseparable factorizations are A333487.
Anti-run compositions are ranked by A333489.
Heinz numbers of inseparable partitions are A335448.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    Table[Length[Select[allnorm[n],sepQ]],{n,0,5}]
    (* or *)
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx<=1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}] (* or *)
    CoefficientList[Series[(x - 1) (2 x^5 + 7 x^4 - 5 x^2 + 1)/((2 x - 1) (2 x^2 - 1)^2), {x, 0, 36}], x] (* Michael De Vlieger, Apr 07 2021 *)

Formula

a(n) = 2^(n-1) - (floor(n/2)+1) * 2^(floor(n/2)-2) for n >= 2. - David A. Corneth, Jul 09 2020
From Chai Wah Wu, Apr 07 2021: (Start)
a(n) = 2*a(n-1) + 4*a(n-2) - 8*a(n-3) - 4*a(n-4) + 8*a(n-5) for n > 6.
G.f.: (x - 1)*(2*x^5 + 7*x^4 - 5*x^2 + 1)/((2*x - 1)*(2*x^2 - 1)^2). (End)

Extensions

a(26)-a(36) from David A. Corneth, Jul 09 2020

A335125 Number of anti-run permutations of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 6, 2, 0, 0, 6, 0, 0, 1, 24, 0, 12, 0, 2, 0, 0, 0, 36, 2, 0, 30, 0, 0, 10, 0, 120, 0, 0, 1, 84, 0, 0, 0, 24, 0, 3, 0, 0, 38, 0, 0, 240, 2, 18, 0, 0, 0, 246, 0, 6, 0, 0, 0, 96, 0, 0, 24, 720, 0, 0, 0, 0, 0, 14, 0, 660, 0, 0, 74, 0, 1, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 01 2020

Keywords

Comments

A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
An anti-run is a sequence with no adjacent equal parts.

Examples

			The a(n) permutations for n = 2, 4, 42, 8, 30, 18:
  (1)  (12)  (1212131)  (123)  (121213)  (12123)
       (21)  (1213121)  (132)  (121231)  (12132)
             (1312121)  (213)  (121312)  (12312)
                        (231)  (121321)  (12321)
                        (312)  (123121)  (13212)
                        (321)  (131212)  (21213)
                               (132121)  (21231)
                               (212131)  (21312)
                               (213121)  (21321)
                               (312121)  (23121)
                                         (31212)
                                         (32121)
		

Crossrefs

Positions of zeros are A335126.
Positions of nonzeros are A335127.
The version for the prime indices themselves is A335452.
Anti-run compositions are A003242.
Anti-runs are ranked by A333489.
Separable partitions are ranked by A335433.
Separable factorizations are A335434.
Inseparable partitions are ranked by A335448.
Patterns contiguously matched by compositions are A335457.
Strict permutations of prime indices are A335489.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Length[Select[Permutations[nrmptn[n]],!MatchQ[#,{_,x_,x_,_}]&]],{n,100}]

A335515 Number of patterns of length n matching the pattern (1,2,3).

Original entry on oeis.org

0, 0, 0, 1, 19, 257, 3167, 38909, 498235, 6811453, 100623211, 1612937661, 28033056683, 526501880989, 10639153638795, 230269650097469, 5315570416909995, 130370239796988957, 3385531348514480651, 92801566389186549245, 2677687663571344712043, 81124824154544921317597
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2020

Keywords

Comments

We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 19 patterns:
  (1,2,3)  (1,1,2,3)
           (1,2,1,3)
           (1,2,2,3)
           (1,2,3,1)
           (1,2,3,2)
           (1,2,3,3)
           (1,2,3,4)
           (1,2,4,3)
           (1,3,2,3)
           (1,3,2,4)
           (1,3,4,2)
           (1,4,2,3)
           (2,1,2,3)
           (2,1,3,4)
           (2,3,1,4)
           (2,3,4,1)
           (3,1,2,3)
           (3,1,2,4)
           (4,1,2,3)
		

Crossrefs

The complement A226316 is the avoiding version.
Compositions matching this pattern are counted by A335514 and ranked by A335479.
Permutations of prime indices matching this pattern are counted by A335520.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Permutations matching (1,2,3) are counted by A056986.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,y_,_,z_,_}/;x
    				
  • PARI
    seq(n)=Vec( serlaplace(1/(2-exp(x + O(x*x^n)))) - 1/2 - 1/(1+sqrt(1-8*x+8*x^2 + O(x*x^n))), -(n+1)) \\ Andrew Howroyd, Jan 28 2024

Formula

a(n) = A000670(n) - A226316(n). - Andrew Howroyd, Jan 28 2024

Extensions

a(9) onwards from Andrew Howroyd, Jan 28 2024

A336102 Number of inseparable multisets of size n covering an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 3, 3, 8, 8, 20, 20, 48, 48, 112, 112, 256, 256, 576, 576, 1280, 1280, 2816, 2816, 6144, 6144, 13312, 13312, 28672, 28672, 61440, 61440, 131072, 131072, 278528, 278528, 589824, 589824, 1245184, 1245184, 2621440, 2621440, 5505024, 5505024, 11534336
Offset: 0

Views

Author

Gus Wiseman, Jul 08 2020

Keywords

Comments

A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts.
Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of its remaining multiplicities plus one.
Also the number of compositions of n whose greatest part is greater than the sum of its remaining parts plus one. For example, the a(2) = 1 through a(7) = 8 compositions are:
(2) (3) (4) (5) (6) (7)
(1,3) (1,4) (1,5) (1,6)
(3,1) (4,1) (2,4) (2,5)
(4,2) (5,2)
(5,1) (6,1)
(1,1,4) (1,1,5)
(1,4,1) (1,5,1)
(4,1,1) (5,1,1)

Examples

			The a(2) = 1 through a(7) = 8 multisets:
  {11}  {111}  {1111}  {11111}  {111111}  {1111111}
               {1112}  {11112}  {111112}  {1111112}
               {1222}  {12222}  {111122}  {1111122}
                                {111123}  {1111123}
                                {112222}  {1122222}
                                {122222}  {1222222}
                                {122223}  {1222223}
                                {123333}  {1233333}
		

Crossrefs

The strong (weakly decreasing multiplicities) case is A025065.
The bisection is A049610.
The separable version is A336103.
Sequences covering an initial interval are A000670.
Anti-run compositions are A003242.
Anti-run patterns are A005649.
Separable partitions are A325534.
Inseparable partitions are A325535.
Inseparable factorizations are A333487.
Anti-run compositions are ranked by A333489.
Heinz numbers of inseparable partitions are A335448.

Programs

  • Mathematica
    Table[Length[Join@@Permutations/@Select[IntegerPartitions[n],With[{mx=Max@@#},mx>1+Total[DeleteCases[#,mx,{1},1]]]&]],{n,0,15}]
    (* Second program: *)
    CoefficientList[Series[x^2*(1 - x) (x + 1)^2/(2 x^2 - 1)^2, {x, 0, 43}], x] (* Michael De Vlieger, Apr 07 2021 *)

Formula

a(2*n) = a(2*n + 1) = A049610(n + 1).
a(n) = 2^(n-1) - A336103(n).
A001792 repeated for n > 1. David A. Corneth, Jul 09 2020
From Chai Wah Wu, Apr 07 2021: (Start)
a(n) = 4*a(n-2) - 4*a(n-4) for n > 5.
G.f.: x^2*(1 - x)*(x + 1)^2/(2*x^2 - 1)^2. (End)

A349050 Number of multisets of size n that have no alternating permutations and cover an initial interval of positive integers.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 8, 12, 20, 32, 48, 80, 112, 192, 256, 448, 576, 1024, 1280, 2304, 2816, 5120, 6144, 11264, 13312, 24576, 28672, 53248, 61440, 114688, 131072, 245760, 278528, 524288, 589824, 1114112, 1245184, 2359296, 2621440, 4980736, 5505024
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The multiset {1,2,2,2,2,3,3} has no alternating permutations, even though it does have the three anti-run permutations (2,1,2,3,2,3,2), (2,3,2,1,2,3,2), (2,3,2,3,2,1,2), so is counted under a(7).
The a(2) = 1 through a(7) = 12 multisets:
  {11}  {111}  {1111}  {11111}  {111111}  {1111111}
               {1112}  {11112}  {111112}  {1111112}
               {1222}  {12222}  {111122}  {1111122}
                       {12223}  {111123}  {1111123}
                                {112222}  {1122222}
                                {122222}  {1122223}
                                {122223}  {1222222}
                                {123333}  {1222223}
                                          {1222233}
                                          {1222234}
                                          {1233333}
                                          {1233334}
As compositions:
  (2)  (3)  (4)    (5)      (6)      (7)
            (1,3)  (1,4)    (1,5)    (1,6)
            (3,1)  (4,1)    (2,4)    (2,5)
                   (1,3,1)  (4,2)    (5,2)
                            (5,1)    (6,1)
                            (1,1,4)  (1,1,5)
                            (1,4,1)  (1,4,2)
                            (4,1,1)  (1,5,1)
                                     (2,4,1)
                                     (5,1,1)
                                     (1,1,4,1)
                                     (1,4,1,1)
		

Crossrefs

The case of weakly decreasing multiplicities is A025065.
The inseparable case is A336102.
A separable instead of alternating version is A336103.
The version for partitions is A345165.
The version for factorizations is A348380, complement A348379.
The complement (still covering an initial interval) is counted by A349055.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A344654 counts partitions w/o an alternating permutation, ranked by A344653.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]== Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n],Select[Permutations[#],wigQ]=={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 0, if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-1)/2-2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349055(n).
a(n) = (n+2)*2^(n/2-3) for even n > 0; a(n) = (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024

A349055 Number of multisets of size n that have an alternating permutation and cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 24, 52, 108, 224, 464, 944, 1936, 3904, 7936, 15936, 32192, 64512, 129792, 259840, 521472, 1043456, 2091008, 4183040, 8375296, 16752640, 33525760, 67055616, 134156288, 268320768, 536739840, 1073496064, 2147205120, 4294443008, 8589344768
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2021

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.
The multisets that have an alternating permutation are those which have no part with multiplicity greater than floor(n/2) except for odd n when either the smallest or largest part can have multiplicity ceiling(n/2). - Andrew Howroyd, Jan 13 2024

Examples

			The multiset {1,2,2,3} has alternating permutations (2,1,3,2), (2,3,1,2), so is counted under a(4).
The a(1) = 1 through a(5) = 12 multisets:
  {1}  {1,2}  {1,1,2}  {1,1,2,2}  {1,1,1,2,2}
              {1,2,2}  {1,1,2,3}  {1,1,1,2,3}
              {1,2,3}  {1,2,2,3}  {1,1,2,2,2}
                       {1,2,3,3}  {1,1,2,2,3}
                       {1,2,3,4}  {1,1,2,3,3}
                                  {1,1,2,3,4}
                                  {1,2,2,3,3}
                                  {1,2,2,3,4}
                                  {1,2,3,3,3}
                                  {1,2,3,3,4}
                                  {1,2,3,4,4}
                                  {1,2,3,4,5}
As compositions:
  (1)  (1,1)  (1,2)    (2,2)      (2,3)
              (2,1)    (1,1,2)    (3,2)
              (1,1,1)  (1,2,1)    (1,1,3)
                       (2,1,1)    (1,2,2)
                       (1,1,1,1)  (2,1,2)
                                  (2,2,1)
                                  (3,1,1)
                                  (1,1,1,2)
                                  (1,1,2,1)
                                  (1,2,1,1)
                                  (2,1,1,1)
                                  (1,1,1,1,1)
		

Crossrefs

The strong inseparable case is A025065.
A separable instead of alternating version is A336103, complement A336102.
The case of weakly decreasing multiplicities is A336106.
The version for non-twin partitions is A344654, ranked by A344653.
The complement for non-twin partitions is A344740, ranked by A344742.
The complement for partitions is A345165, ranked by A345171.
The version for partitions is A345170, ranked by A345172.
The version for factorizations is A348379, complement A348380.
The complement (still covering an initial interval) is counted by A349050.
A000670 counts sequences covering an initial interval, anti-run A005649.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions, ranked by A333489.
A025047 = alternating compositions, ranked by A345167, also A025048/A025049.
A049774 counts permutations avoiding the consecutive pattern (1,2,3).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s, Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    wigQ[y_]:=Or[Length[y]==0, Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[allnorm[n], Select[Permutations[#],wigQ]!={}&]],{n,0,7}]
  • PARI
    a(n) = if(n==0, 1, 2^(n-1) - if(n%2==0, (n+2)*2^(n/2-3), (n-1)*2^((n-5)/2))) \\ Andrew Howroyd, Jan 13 2024

Formula

a(n) = A011782(n) - A349050(n).
a(n) = 2^(n-1) - (n+2)*2^(n/2-3) for even n > 0; a(n) = 2^(n-1) - (n-1)*2^((n-5)/2) for odd n. - Andrew Howroyd, Jan 13 2024

Extensions

Terms a(10) and beyond from Andrew Howroyd, Jan 13 2024

A335509 Number of patterns of length n matching the pattern (1,1,2).

Original entry on oeis.org

0, 0, 0, 1, 15, 181, 2163, 27133, 364395, 5272861, 82289163, 1383131773, 24978057195, 483269202781, 9987505786443, 219821796033853, 5137810967933355, 127169580176271901, 3324712113052429323, 91585136315240091133, 2652142325158529483115, 80562824634615270041821
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

Also the number of (1,2,1)-matching patterns of length n.
Also the number of (2,1,2)-matching patterns of length n.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The a(3) = 1 through a(4) = 15 patterns:
  (1,1,2)  (1,1,1,2)
           (1,1,2,1)
           (1,1,2,2)
           (1,1,2,3)
           (1,1,3,2)
           (1,2,1,2)
           (1,2,1,3)
           (1,2,2,3)
           (1,3,1,2)
           (2,1,1,2)
           (2,1,1,3)
           (2,1,2,3)
           (2,2,1,3)
           (2,2,3,1)
           (3,1,1,2)
		

Crossrefs

The complement A001710 is the avoiding version.
Compositions matching this pattern are counted by A335470 and ranked by A335476.
Permutations of prime indices matching this pattern are counted by A335446.
Patterns are counted by A000670 and ranked by A333217.
Patterns matching the pattern (1,1) are counted by A019472.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
Patterns matching (1,2,3) are counted by A335515.

Programs

  • Mathematica
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MatchQ[#,{_,x_,_,x_,_,y_,_}/;x
    				
  • PARI
    seq(n)={Vec(serlaplace(1/(2-exp(x + O(x*x^n))) - (2-2*x+x^2)/(2*(1-x)^2)), -(n+1))} \\ Andrew Howroyd, Dec 31 2020

Formula

E.g.f.: 1/(2-exp(x)) - (2-2*x+x^2)/(2*(1-x)^2). - Andrew Howroyd, Dec 31 2020

Extensions

Terms a(10) and beyond from Andrew Howroyd, Dec 31 2020

A002051 Steffensen's bracket function [n,2].

Original entry on oeis.org

0, 0, 1, 9, 67, 525, 4651, 47229, 545707, 7087005, 102247051, 1622631549, 28091565547, 526858344285, 10641342962251, 230283190961469, 5315654681948587, 130370767029070365, 3385534663256714251, 92801587319328148989, 2677687796244383678827, 81124824998504072833245, 2574844419803190382447051
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of ways to arrange the blocks of the partitions of {1,2,...,n} in an undirected cycle of length 3 or more, see A000629. - Geoffrey Critzer, Nov 23 2012
From Gus Wiseman, Jun 24 2020: (Start)
Also the number of (1,2)-matching length-n sequences covering an initial interval of positive integers. For example, the a(2) = 1 and a(3) = 9 sequences are:
(1,2) (1,1,2)
(1,2,1)
(1,2,2)
(1,2,3)
(1,3,2)
(2,1,2)
(2,1,3)
(2,3,1)
(3,1,2)
Missing from this list are:
(1,1) (1,1,1)
(2,1) (2,1,1)
(2,2,1)
(3,2,1)
(End)

Examples

			a(4) = 9. There are 6 partitions of {1,2,3,4} into exactly three blocks and one way to put them in an undirected cycle of length three. There is one partition of {1,2,3,4} into four blocks and 3 ways to make an undirected cycle of length four. 6 + 3 = 9. - _Geoffrey Critzer_, Nov 23 2012
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Steffensen, J. F. Interpolation. 2d ed. Chelsea Publishing Co., New York, N. Y., 1950. ix+248 pp. MR0036799 (12,164d)

Crossrefs

A diagonal of the triangular array in A241168.
(1,2)-avoiding patterns are counted by A011782.
(1,1)-matching patterns are counted by A019472.
(1,2)-matching permutations are counted by A033312.
(1,2)-matching compositions are counted by A056823.
(1,2)-matching permutations of prime indices are counted by A335447.
(1,2)-matching compositions are ranked by A335485.
Patterns are counted by A000670 and ranked by A333217.
Patterns matched by compositions are counted by A335456.

Programs

  • Mathematica
    a[n_] := Sum[ k!*StirlingS2[n-1, k], {k, 0, n-1}] - 2^(n-2); Table[a[n], {n, 3, 17}] (* Jean-François Alcover, Nov 18 2011, after Manfred Goebel *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],!GreaterEqual@@#&]],{n,0,5}] (* Gus Wiseman, Jun 24 2020 *)
  • PARI
    a(n) = sum(s=2, n-1, stirling(n,s+1,2)*s!/2); \\ Michel Marcus, Jun 24 2020

Formula

[n,2] = Sum_{s=2..n-1} Stirling2(n,s+1)*s!/2 (cf. A241168).
a(1)=0; for n >= 2, a(n) = A000670(n-1) - 2^(n-2). - Manfred Goebel (mkgoebel(AT)essex.ac.uk), Feb 20 2000; formula adjusted by N. J. A. Sloane, Apr 22 2014. For example, a(5) = 67 = A000670(4)-2^3 = 75-8 = 67.
E.g.f.: (1 - exp(2*x) - 2*log(2 - exp(x)))/4 = B(A(x)) where A(x) = exp(x)-1 and B(x) = (log(1/(1-x))- x - x^2/2)/2. - Geoffrey Critzer, Nov 23 2012

Extensions

Entry revised by N. J. A. Sloane, Apr 22 2014

A335488 Numbers k such that the k-th composition in standard order (A066099) matches the pattern (1,1).

Original entry on oeis.org

3, 7, 10, 11, 13, 14, 15, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 45, 46, 47, 49, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 97, 99, 100, 101
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2020

Keywords

Comments

These are compositions with some part appearing more than once, or non-strict compositions.
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
We define a pattern to be a finite sequence covering an initial interval of positive integers. Patterns are counted by A000670 and ranked by A333217. A sequence S is said to match a pattern P if there is a not necessarily contiguous subsequence of S whose parts have the same relative order as P. For example, (3,1,1,3) matches (1,1,2), (2,1,1), and (2,1,2), but avoids (1,2,1), (1,2,2), and (2,2,1).

Examples

			The sequence of terms together with the corresponding compositions begins:
   3: (1,1)
   7: (1,1,1)
  10: (2,2)
  11: (2,1,1)
  13: (1,2,1)
  14: (1,1,2)
  15: (1,1,1,1)
  19: (3,1,1)
  21: (2,2,1)
  22: (2,1,2)
  23: (2,1,1,1)
  25: (1,3,1)
  26: (1,2,2)
  27: (1,2,1,1)
  28: (1,1,3)
		

Crossrefs

The complement A233564 is the avoiding version.
Patterns matching this pattern are counted by A019472 (by length).
Permutations of prime indices matching this pattern are counted by A335487.
These compositions are counted by A261982 (by sum).
Constant patterns are counted by A000005 and ranked by A272919.
Permutations are counted by A000142 and ranked by A333218.
Patterns are counted by A000670 and ranked by A333217.
Non-unimodal compositions are counted by A115981 and ranked by A335373.
Combinatory separations are counted by A269134.
Patterns matched by standard compositions are counted by A335454.
Minimal patterns avoided by a standard composition are counted by A335465.
The (1,1,1)-matching case is A335512.

Programs

  • Mathematica
    stc[n_]:=Reverse[Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]];
    Select[Range[0,100],MatchQ[stc[#],{_,x_,_,x_,_}]&]
Showing 1-10 of 15 results. Next