cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019495 Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,11).

Original entry on oeis.org

4, 11, 30, 81, 218, 586, 1575, 4233, 11376, 30572, 82159, 220793, 593356, 1594576, 4285239, 11516085, 30948148, 83169572, 223508615, 600653577, 1614187084, 4337941272, 11657715927, 31328764525, 84192434676, 226257439900, 608040726071, 1634039193249
Offset: 0

Views

Author

Keywords

Crossrefs

See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    Iv:=[4,11]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 04 2016
    
  • Maple
    a:= proc(n) option remember;
          `if`(n<2, [4, 11][n+1], ceil(a(n-1)^2/a(n-2))-1)
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 18 2015
  • Mathematica
    a = {4, 11}; Do[AppendTo[a, Floor[a[[n]]^2/a[[n - 1]]]], {n, 2, 27}];
    a (* Michael De Vlieger, Sep 18 2015 *)
  • PARI
    T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=floor(a[n-1]^2/a[n-2])); a
    T(4, 11, 100) \\ Colin Barker, Sep 18 2015
    
  • Python
    from itertools import islice
    def A019495_gen(): # generator of terms
        a, b = 4, 11
        yield from (a,b)
        while True:
            a, b = b, (b**2-1)//a
            yield b
    A019495_list = list(islice(A019495_gen(),30)) # Chai Wah Wu, Dec 06 2023