A019495 Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(4,11).
4, 11, 30, 81, 218, 586, 1575, 4233, 11376, 30572, 82159, 220793, 593356, 1594576, 4285239, 11516085, 30948148, 83169572, 223508615, 600653577, 1614187084, 4337941272, 11657715927, 31328764525, 84192434676, 226257439900, 608040726071, 1634039193249
Offset: 0
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory (Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
- Index entries for Pisot sequences
Crossrefs
See A008776 for definitions of Pisot sequences.
Programs
-
Magma
Iv:=[4,11]; [n le 2 select Iv[n] else Floor(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 04 2016
-
Maple
a:= proc(n) option remember; `if`(n<2, [4, 11][n+1], ceil(a(n-1)^2/a(n-2))-1) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 18 2015
-
Mathematica
a = {4, 11}; Do[AppendTo[a, Floor[a[[n]]^2/a[[n - 1]]]], {n, 2, 27}]; a (* Michael De Vlieger, Sep 18 2015 *)
-
PARI
T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=floor(a[n-1]^2/a[n-2])); a T(4, 11, 100) \\ Colin Barker, Sep 18 2015
-
Python
from itertools import islice def A019495_gen(): # generator of terms a, b = 4, 11 yield from (a,b) while True: a, b = b, (b**2-1)//a yield b A019495_list = list(islice(A019495_gen(),30)) # Chai Wah Wu, Dec 06 2023