A019567 Order of the Mongean shuffle permutation of 2n cards: a(n) is least number m for which either 2^m + 1 or 2^m - 1 is divisible by 4n + 1.
1, 2, 3, 6, 4, 6, 10, 14, 5, 18, 10, 12, 21, 26, 9, 30, 6, 22, 9, 30, 27, 8, 11, 10, 24, 50, 12, 18, 14, 12, 55, 50, 7, 18, 34, 46, 14, 74, 24, 26, 33, 20, 78, 86, 29, 90, 18, 18, 48, 98, 33, 10, 45, 70, 15, 24, 60, 38, 29, 78, 12, 84, 41, 110, 8, 84, 26, 134, 12, 46, 35, 36, 68, 146
Offset: 0
Examples
Illustrating the initial terms: n 4n+1 2^m+1 2^m-1 m 0 1 1 1 1 5 5 2 2 9 9 3 3 13 5*13 6 4 17 17 4 5 21 3*21 6 6 25 41*25 10
References
- A. P. Domoryad, Mathematical Games and Pastimes, Pergamon Press, 1964; see pp. 134-135.
- W. W. Rouse Ball, Mathematical Recreations and Essays, 11th ed. 1939, p. 311
Links
- R. J. Mathar, Table of n, a(n) for n = 0..2000
- P. Diaconis, The mathematics of perfect shuffles, Adv. Appl. Math. 4 (2) (1983) 175-196.
- Arne Ledet, The Monge shuffle for two-power decks, Math. Scand. Vol 98, No 1 (2006), 5-11.
- E. Ross, Mathematics and Music: The Mathieu Group M_12 (2011), Chapter 2.
- T. & X. Vigouroux, First 2000000 terms, for n = 0..1999999
Programs
-
Maple
A019567:= proc(n) for m from 1 do if modp(2^m-1,4*n+1) =0 or modp(2^m+1,4*n+1)=0 then return m ; end if; end do; end proc: # N. J. A. Sloane, Jul 28 2007
-
Mathematica
a[n_] := For[m=1, True, m++, If[AnyTrue[{-1, 1}, Divisible[2^m+#, 4n+1]&], Return[m]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Aug 26 2019 *)
-
PARI
A019567(n,z=Mod(2,4*n+1))=for(m=1,oo,bittest(5,lift(z^m+1))&&return(m)) \\ M. F. Hasler, Mar 31 2019
Formula
Extensions
Comments corrected by Mikko Nieminen, Jul 26 2007, who also provided the Domoryad reference
Definition edited by N. J. A. Sloane, Nov 09 2017
Comments