cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019712 Continued fraction expansion of tribonacci constant A058265.

Original entry on oeis.org

1, 1, 5, 4, 2, 305, 1, 8, 2, 1, 4, 6, 14, 3, 1, 13, 5, 1, 7, 23, 1, 16, 4, 1, 1, 1, 1, 1, 2, 17, 1, 3, 1, 1, 1, 29, 1, 6, 1, 3, 1, 1, 1, 1, 3, 2, 5, 1, 63, 2, 1, 2, 5, 1, 4, 11, 2, 2, 1, 1, 1, 1, 1, 2, 1, 9, 3, 3, 18, 1, 38, 2, 4, 1, 20, 3, 1, 1, 1, 5, 2, 2, 1, 1, 1, 44, 6, 3, 9, 1, 1, 1, 1, 3, 3, 1, 6
Offset: 0

Views

Author

Robert G. Wilson v, Dec 07 2000

Keywords

Comments

The only real root of the equation x^3 - x^2 - x - 1 = 0.

Examples

			1.839286755214161132551852564... = 1 + 1/(1 + 1/(5 + 1/(4 + 1/(2 + ...)))). - _Harry J. Smith_, May 30 2009
		

References

  • David Wells, "The Penguin Dictionary of Curious and Interesting Numbers," Revised Edition, Penguin Books, London, England, 1997, page 23.

Crossrefs

Cf. A058265 (decimal expansion), A319428/A319429 (convergents).

Programs

  • Mathematica
    ContinuedFraction[ 1/3 + 1/3*(19 - 3*Sqrt[33])^(1/3) + 1/3*(19 + 3*Sqrt[33])^(1/3), 100]
  • PARI
    { allocatemem(932245000); default(realprecision, 21000); x=contfrac(solve(x=1, 2, x^3 - x^2 - x - 1)); for (n=0, 20000, write("b019712.txt", n, " ", x[n+1])); } \\ Harry J. Smith, May 30 2009