cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019938 Decimal expansion of tangent of 40 degrees.

Original entry on oeis.org

8, 3, 9, 0, 9, 9, 6, 3, 1, 1, 7, 7, 2, 8, 0, 0, 1, 1, 7, 6, 3, 1, 2, 7, 2, 9, 8, 1, 2, 3, 1, 8, 1, 3, 6, 4, 6, 8, 7, 4, 3, 4, 2, 8, 3, 0, 1, 2, 3, 4, 6, 5, 3, 3, 2, 4, 4, 1, 0, 2, 0, 3, 9, 2, 3, 2, 5, 1, 8, 3, 2, 8, 0, 5, 5, 0, 3, 4, 5, 2, 1, 7, 6, 0, 8, 0, 6, 7, 2, 4, 1, 1, 3, 1, 2, 8, 8, 3, 0
Offset: 0

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 50 degrees. - Ivan Panchenko, Aug 01 2014

Examples

			0.839099631177280011763127298123181364687434283012346533244102...
		

Crossrefs

Cf. A019849 (sine of 40 degrees).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(2*Pi(R)/9); // G. C. Greubel, Nov 25 2018
    
  • Mathematica
    RealDigits[Tan[2*Pi/9], 10, 100][[1]] (* G. C. Greubel, Nov 25 2018 *)
    RealDigits[Tan[40 Degree],10,120][[1]] (* Harvey P. Dale, Apr 06 2022 *)
  • PARI
    default(realprecision, 100); tan(2*Pi/9) \\ G. C. Greubel, Nov 25 2018
    
  • PARI
    polrootsreal(x^6-33*x^4+27*x^2-3)[5] \\ Charles R Greathouse IV, Feb 05 2025
    
  • Sage
    numerical_approx(tan(2*pi/9), digits=100) # G. C. Greubel, Nov 25 2018

Formula

One of the 6 real-valued roots of x^6-33*x^4+27*x^2-3=0. - R. J. Mathar, Aug 31 2025
Equals A019849/A019859. - R. J. Mathar, Aug 31 2025