cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019946 Decimal expansion of tangent of 48 degrees.

Original entry on oeis.org

1, 1, 1, 0, 6, 1, 2, 5, 1, 4, 8, 2, 9, 1, 9, 2, 8, 7, 0, 1, 4, 3, 4, 8, 1, 9, 6, 4, 1, 6, 5, 1, 3, 5, 5, 3, 2, 5, 7, 6, 9, 5, 9, 5, 1, 0, 3, 9, 0, 8, 5, 9, 0, 4, 8, 1, 8, 4, 4, 0, 2, 2, 2, 0, 2, 8, 9, 9, 6, 5, 5, 3, 5, 8, 7, 3, 7, 3, 1, 3, 6, 5, 4, 5, 8, 5, 0, 6, 1, 6, 9, 2, 1, 5, 8, 7, 8, 6, 8
Offset: 1

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 42 degrees. - Ivan Panchenko, Sep 01 2014

Examples

			tan(4*Pi/15) = 1.11061251482919287014348196416513553257695951039085904818440222...
		

Crossrefs

Cf. A019857 (sine of 48 degrees).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(4*Pi(R)/15); // G. C. Greubel, Nov 24 2018
    
  • Mathematica
    RealDigits[Tan[48 Degree],10,120][[1]] (* Harvey P. Dale, Nov 26 2011 *)
    RealDigits[Tan[4*Pi/15], 10, 100][[1]] (* G. C. Greubel, Nov 24 2018 *)
  • PARI
    default(realprecision, 100); tan(4*Pi/15) \\ G. C. Greubel, Nov 24 2018
    
  • Sage
    numerical_approx(tan(4*pi/15), digits=100) # G. C. Greubel, Nov 24 2018

Formula

Equals cot(7*Pi/30) = sqrt(23 - 10*sqrt(5) + 2*sqrt(3*(85 -38*sqrt(5)))). - G. C. Greubel, Nov 24 2018
Let r(n) = (n - 1)/(n + 1) if n mod 4 = 1, (n + 1)/(n - 1) otherwise; then this constant equals with Product_{n>=0} r(30*n+15) = (8/7) * (22/23) * (38/37) * (52/53) ... - Dimitris Valianatos, Sep 14 2019
Equals A019857 / A019851. - R. J. Mathar, Sep 06 2025