A019946 Decimal expansion of tangent of 48 degrees.
1, 1, 1, 0, 6, 1, 2, 5, 1, 4, 8, 2, 9, 1, 9, 2, 8, 7, 0, 1, 4, 3, 4, 8, 1, 9, 6, 4, 1, 6, 5, 1, 3, 5, 5, 3, 2, 5, 7, 6, 9, 5, 9, 5, 1, 0, 3, 9, 0, 8, 5, 9, 0, 4, 8, 1, 8, 4, 4, 0, 2, 2, 2, 0, 2, 8, 9, 9, 6, 5, 5, 3, 5, 8, 7, 3, 7, 3, 1, 3, 6, 5, 4, 5, 8, 5, 0, 6, 1, 6, 9, 2, 1, 5, 8, 7, 8, 6, 8
Offset: 1
Examples
tan(4*Pi/15) = 1.11061251482919287014348196416513553257695951039085904818440222...
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Wikipedia, Exact trigonometric constants
- Index entries for algebraic numbers, degree 8
Crossrefs
Cf. A019857 (sine of 48 degrees).
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); Tan(4*Pi(R)/15); // G. C. Greubel, Nov 24 2018
-
Mathematica
RealDigits[Tan[48 Degree],10,120][[1]] (* Harvey P. Dale, Nov 26 2011 *) RealDigits[Tan[4*Pi/15], 10, 100][[1]] (* G. C. Greubel, Nov 24 2018 *)
-
PARI
default(realprecision, 100); tan(4*Pi/15) \\ G. C. Greubel, Nov 24 2018
-
Sage
numerical_approx(tan(4*pi/15), digits=100) # G. C. Greubel, Nov 24 2018
Formula
Equals cot(7*Pi/30) = sqrt(23 - 10*sqrt(5) + 2*sqrt(3*(85 -38*sqrt(5)))). - G. C. Greubel, Nov 24 2018
Let r(n) = (n - 1)/(n + 1) if n mod 4 = 1, (n + 1)/(n - 1) otherwise; then this constant equals with Product_{n>=0} r(30*n+15) = (8/7) * (22/23) * (38/37) * (52/53) ... - Dimitris Valianatos, Sep 14 2019
Comments