A019949 Decimal expansion of tangent of 51 degrees.
1, 2, 3, 4, 8, 9, 7, 1, 5, 6, 5, 3, 5, 0, 5, 1, 3, 9, 8, 5, 5, 6, 1, 7, 4, 6, 9, 5, 3, 7, 5, 9, 3, 5, 1, 4, 0, 0, 5, 3, 6, 2, 5, 5, 8, 4, 0, 7, 7, 9, 7, 6, 5, 3, 6, 4, 2, 1, 2, 5, 9, 2, 0, 8, 8, 4, 3, 7, 5, 7, 3, 0, 1, 3, 4, 7, 7, 4, 0, 2, 1, 4, 1, 2, 3, 1, 2, 8, 7, 0, 4, 0, 6, 4, 3, 5, 3, 8, 1
Offset: 1
Examples
1.2348971565350513985561746953759351400536255840779765364212592...
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Wikipedia, Exact trigonometric constants
Crossrefs
Cf. A019860 (sine of 51 degrees).
Programs
-
Magma
SetDefaultRealField(RealField(100)); R:= RealField(); Tan(17*Pi(R)/60); // G. C. Greubel, Nov 23 2018
-
Mathematica
RealDigits[Tan[17*Pi/60], 10, 100][[1]] (* G. C. Greubel, Nov 23 2018 *) RealDigits[Tan[51 Degree],10,120][[1]] (* Harvey P. Dale, Jan 18 2021 *)
-
PARI
default(realprecision, 100); tan(17*Pi/60) \\ G. C. Greubel, Nov 23 2018
-
Sage
numerical_approx(tan(17*pi/60), digits=100) # G. C. Greubel, Nov 23 2018
Formula
Equals cot(13*Pi/60) = ((2+sqrt(3))*(3-sqrt(5)) -2)*(2 + sqrt(2*(5 + sqrt(5))))/4. - G. C. Greubel, Nov 23 2018
Comments