cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A019966 Decimal expansion of tangent of 68 degrees.

Original entry on oeis.org

2, 4, 7, 5, 0, 8, 6, 8, 5, 3, 4, 1, 6, 2, 9, 5, 8, 2, 5, 2, 4, 0, 0, 1, 3, 2, 4, 6, 0, 7, 6, 1, 7, 4, 3, 2, 1, 4, 1, 2, 2, 5, 6, 6, 4, 5, 3, 7, 9, 4, 6, 6, 5, 5, 5, 4, 7, 3, 7, 4, 1, 2, 9, 5, 4, 2, 9, 9, 5, 4, 4, 5, 5, 1, 3, 7, 9, 2, 2, 0, 3, 9, 9, 5, 1, 9, 2, 3, 2, 0, 1, 9, 8, 5, 2, 0, 3, 3, 1
Offset: 1

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 22 degrees. - Ivan Panchenko, Sep 01 2014

Examples

			2.475086853416295825240013246076174321412256645379466555473741...
		

Crossrefs

Cf. A019877 (sine of 68 degrees).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Tan(17*Pi(R)/45); // G. C. Greubel, Nov 21 2018
    
  • Mathematica
    RealDigits[Tan[17*Pi/45], 10, 100][[1]] (* G. C. Greubel, Nov 21 2018 *)
    RealDigits[Tan[68 Degree],10,120][[1]] (* Harvey P. Dale, Jun 02 2019 *)
  • PARI
    default(realprecision, 100); tan(17*Pi/45) \\ G. C. Greubel, Nov 21 2018
    
  • Sage
    numerical_approx(tan(17*pi/45), digits=100) # G. C. Greubel, Nov 21 2018