cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225186 Squares in the Thue-Morse word A001285.

Original entry on oeis.org

11, 22, 1212, 2121, 121121, 212212, 12211221, 21122112, 122112122112, 211221211221, 1221211212212112, 2112122121121221, 122121121221122121121221, 211212212112211212212112, 12212112211212211221211221121221, 21121221122121122112122112212112
Offset: 1

Views

Author

N. J. A. Sloane, May 04 2013

Keywords

Comments

A square in an infinite word w is a factor of the form uu, where u has finite length.
Consists of 11, 22, 121121, 212212 and their repeated images under the morphism 1 -> 12, 2 -> 21.
Replacing {1,2} by {0,1} gives the squares in A010060.

Crossrefs

Cf. A001285, A020060, A225188 (square roots).

A020015 Nearest integer to Gamma(n + 9/10)/Gamma(9/10).

Original entry on oeis.org

1, 1, 2, 5, 19, 95, 559, 3858, 30478, 271252, 2685395, 29270806, 348322597, 4493361500, 62457724854, 930620100318, 14796859595058, 250066927156482, 4476197996101023, 84600142126309335, 1683542828313555775, 35186045111753315688
Offset: 0

Views

Author

Keywords

Comments

Gamma(n + 9/10)/Gamma(9/10) = 1, 9/10, 171/100, 4959/1000, 193401/10000, 9476649/100000, 559122291/1000000, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Magma
    [Round(Gamma(n +9/10)/Gamma(9/10)): n in [0..30]]; // G. C. Greubel, Jan 19 2018
  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end; seq(f(n, 9/10), n=0..25);
  • Mathematica
    f[n_] := Round[Gamma[n + 9/10]/Gamma[9/10]]; Array[f, 22, 0] (* Robert G. Wilson v, Sep 13 2013 *)
  • PARI
    for(n=0,30, print1(round(gamma(n+9/10)/gamma(9/10)), ", ")) \\ G. C. Greubel, Jan 19 2018
    

A225188 Words u such that uu is a factor of the Thue-Morse word A001285.

Original entry on oeis.org

1, 2, 12, 21, 121, 212, 1221, 2112, 122112, 211221, 12212112, 21121221, 122121121221, 211212212112, 1221211221121221, 2112122112212112, 122121122112122112212112, 211212211221211221121221, 12212112211212212112122112212112, 21121221122121121221211221121221, 122121122112122121121221122121121221211221121221, 211212211221211212212112211212212112122112212112
Offset: 1

Views

Author

N. J. A. Sloane, May 05 2013

Keywords

Comments

Consists of 1, 2, 121, 212 and their repeated images under the morphism 1 -> 12, 2 -> 21.
These are the square roots of the words in A225186.
Replacing {1,2} by {0,1} gives the words u such that uu is a factor of A010060.

Crossrefs

Showing 1-3 of 3 results.