cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A020074 a(n) = floor( Gamma(n+6/7)/Gamma(6/7) ).

Original entry on oeis.org

1, 0, 1, 4, 17, 85, 499, 3422, 26888, 238157, 2347553, 25487720, 302211542, 3885576978, 53842995267, 799953072548, 12684970150410, 213832353964066, 3818434892215473, 72004772253206072, 1429809049027949159
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n+6/7)/Gamma(6/7)): n in [0..25]]; // G. C. Greubel, Nov 17 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(floor(pochhammer(6/7,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
  • Mathematica
    Floor[Pochhammer[6/7, Range[0, 25]]] (* G. C. Greubel, Nov 17 2019 *)
  • PARI
    vector(26, n, my(x=6/7); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 17 2019
    
  • Sage
    [floor(rising_factorial(6/7, n)) for n in (0..25)] # G. C. Greubel, Nov 17 2019

A020076 a(n) = floor( Gamma(n+4/7)/Gamma(4/7) ).

Original entry on oeis.org

1, 0, 0, 2, 8, 37, 210, 1380, 10450, 89574, 857351, 9063434, 104876887, 1318452295, 17893281147, 260730668150, 4059948975490, 67279154450985, 1182190856781603, 21954973054515489, 429690186924088870
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n+4/7)/Gamma(4/7)): n in [0..25]]; // G. C. Greubel, Nov 17 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(floor(pochhammer(4/7,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
  • Mathematica
    Floor[Pochhammer[4/7, Range[0, 25]]] (* G. C. Greubel, Nov 17 2019 *)
  • PARI
    vector(26, n, my(x=4/7); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 17 2019
    
  • Sage
    [floor(rising_factorial(4/7, n)) for n in (0..25)] # G. C. Greubel, Nov 17 2019

A020077 a(n) = floor( Gamma(n+3/7)/Gamma(3/7) ).

Original entry on oeis.org

1, 0, 0, 1, 5, 22, 122, 787, 5852, 49330, 465112, 4850460, 55433829, 688963306, 9251792972, 133490155743, 2059562402902, 33835668047686, 589707357402530, 10867464157846629, 211139303638163096, 4313274345751046120
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n+3/7)/Gamma(3/7)): n in [0..25]]; // G. C. Greubel, Nov 17 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(floor(pochhammer(3/7,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
  • Mathematica
    Floor[Pochhammer[3/7, Range[0, 25]]] (* G. C. Greubel, Nov 17 2019 *)
  • PARI
    vector(26, n, my(x=3/7); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 17 2019
    
  • Sage
    [floor(rising_factorial(3/7, n)) for n in (0..25)] # G. C. Greubel, Nov 17 2019

A020078 a(n) = floor( Gamma(n+2/7)/Gamma(2/7) ).

Original entry on oeis.org

1, 0, 0, 0, 2, 11, 62, 392, 2862, 23714, 220204, 2264965, 25561751, 314044378, 4172303889, 59604341272, 911094930876, 14837831731419, 256482519928831, 4689966078698628, 90449345803473558, 1834829586299035048
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n+2/7)/Gamma(2/7)): n in [0..25]]; // G. C. Greubel, Nov 17 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(floor(pochhammer(2/7,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
  • Mathematica
    Floor[Pochhammer[2/7, Range[0, 25]]] (* G. C. Greubel, Nov 17 2019 *)
  • PARI
    vector(26, n, my(x=2/7); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 17 2019
    
  • Sage
    [floor(rising_factorial(2/7, n)) for n in (0..25)] # G. C. Greubel, Nov 17 2019

A020079 a(n) = floor( Gamma(n+1/7)/Gamma(1/7) ).

Original entry on oeis.org

1, 0, 0, 0, 1, 4, 23, 143, 1027, 8370, 76527, 776207, 8649165, 105025575, 1380336141, 19521896861, 295617295326, 4772107767405, 81807561726950, 1484222905617529, 28412267050392705, 572304236300767347
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Gamma(n+1/7)/Gamma(1/7)): n in [0..25]]; // G. C. Greubel, Nov 17 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(floor(pochhammer(1/7,n)), n = 0..25); # G. C. Greubel, Nov 17 2019
  • Mathematica
    Floor[Pochhammer[1/7, Range[0, 25]]] (* G. C. Greubel, Nov 17 2019 *)
  • PARI
    vector(26, n, my(x=1/7); gamma(n-1+x)\gamma(x) ) \\ G. C. Greubel, Nov 17 2019
    
  • Sage
    [floor(rising_factorial(1/7, n)) for n in (0..25)] # G. C. Greubel, Nov 17 2019

A020030 Nearest integer to Gamma(n + 5/7)/Gamma(5/7).

Original entry on oeis.org

1, 1, 1, 3, 12, 58, 333, 2233, 17225, 150104, 1458150, 15623032, 183012659, 2326875239, 31911431853, 469553925838, 7378704548888, 123329776031415, 2184698889699346, 40885079221516335, 806020133224179176
Offset: 0

Views

Author

Keywords

Comments

Gamma(n + 5/7)/Gamma(5/7) = 1, 5/7, 60/49, 1140/343, 29640/2401, 978120/16807, 39124800/117649, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
Showing 1-6 of 6 results.