cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A020062 Integer part of Gamma(n+3/10)/Gamma(3/10).

Original entry on oeis.org

1, 0, 0, 0, 2, 12, 67, 425, 3102, 25750, 239483, 2466677, 27873456, 342843514, 4559818740, 65205407994, 997642742321, 16261576699844, 281325276907303, 5148252567403658, 99361274550890613, 2017033873383079453
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Truncate(Gamma(n+3/10)/Gamma(3/10)): n in [0..20]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(trunc(pochhammer(3/10,n)), n = 0..20); # G. C. Greubel, Nov 13 2019
  • Mathematica
    IntegerPart[Pochhammer[3/10, Range[0, 20]]] (* G. C. Greubel, Nov 13 2019 *)
  • PARI
    P(n,x) = gamma(x+n)/gamma(x);
    vector(21, n, truncate(P(n-1, 3/10)) ) \\ G. C. Greubel, Nov 13 2019
    
  • Sage
    [int(rising_factorial(3/10, n)) for n in (0..20)] # G. C. Greubel, Nov 13 2019

A020017 Nearest integer to Gamma(n + 3/10)/Gamma(3/10).

Original entry on oeis.org

1, 0, 0, 1, 3, 13, 67, 425, 3103, 25751, 239483, 2466678, 27873456, 342843514, 4559818741, 65205407995, 997642742322, 16261576699844, 281325276907304, 5148252567403659, 99361274550890613, 2017033873383079454
Offset: 0

Views

Author

Keywords

Comments

Gamma(n + 3/10)/Gamma(3/10) = 1, 3/10, 39/100, 897/1000, 29601/10000, 1272843/100000, 67460679/1000000, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Magma
    [Round(Gamma(n+3/10)/Gamma(3/10)): n in [0..30]]; // G. C. Greubel, Jan 20 2018
  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
  • Mathematica
    Table[Round[Gamma[n + 3/10]/Gamma[3/10]], {n, 0, 50}] (* G. C. Greubel, Jan 20 2018 *)
  • PARI
    for(n=0,30, print1(round(gamma(n+3/10)/gamma(3/10)), ", ")) \\ G. C. Greubel, Jan 20 2018
    
Showing 1-2 of 2 results.