cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A020065 Integer part of Gamma(n+7/9)/Gamma(7/9).

Original entry on oeis.org

1, 0, 1, 3, 14, 69, 400, 2714, 21115, 185345, 1812263, 19532170, 230045568, 2939471157, 40499380396, 598490843642, 9442855533026, 158430131720783, 2816535675036146, 52888281009012092, 1046012668844905826
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Truncate(Gamma(n+7/9)/Gamma(7/9)): n in [0..20]]; // G. C. Greubel, Nov 13 2019
    
  • Maple
    Digits := 64:f := proc(n,x) trunc(GAMMA(n+x)/GAMMA(x)); end;
    seq(trunc(pochhammer(7/9,n)), n = 0..20); # G. C. Greubel, Nov 13 2019
  • Mathematica
    IntegerPart[Pochhammer[7/9, Range[0, 20]]] (* G. C. Greubel, Nov 13 2019 *)
  • PARI
    P(n,x) = gamma(x+n)/gamma(x);
    vector(21, n, truncate(P(n-1, 7/9)) ) \\ G. C. Greubel, Nov 13 2019
    
  • Sage
    [int(rising_factorial(7/9, n)) for n in (0..20)] # G. C. Greubel, Nov 13 2019

A020020 Nearest integer to Gamma(n + 7/9)/Gamma(7/9).

Original entry on oeis.org

1, 1, 1, 4, 15, 69, 401, 2715, 21115, 185345, 1812263, 19532171, 230045569, 2939471158, 40499380397, 598490843643, 9442855533027, 158430131720783, 2816535675036147, 52888281009012092, 1046012668844905826
Offset: 0

Views

Author

Keywords

Comments

Gamma(n + 7/9)/Gamma(7/9) = 1, 7/9, 112/81, 2800/729, 95200/6561, 4093600/59049, 212867200/531441, 12984899200/4782969, ... - R. J. Mathar, Sep 04 2016

Crossrefs

Programs

  • Magma
    [Round(Gamma(n +7/9)/Gamma(7/9)): n in [0..30]]; // G. C. Greubel, Feb 03 2018
  • Maple
    Digits := 64:f := proc(n,x) round(GAMMA(n+x)/GAMMA(x)); end;
  • Mathematica
    Table[Round[Gamma[n + 7/9]/Gamma[7/9]], {n, 0, 50}] (* G. C. Greubel, Feb 03 2018 *)
  • PARI
    for(n=0,30, print1(round(gamma(n+7/9)/gamma(7/9)), ", ")) \\ G. C. Greubel, Feb 03 2018
    
Showing 1-2 of 2 results.