cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090084 Even pseudoprimes to base 11.

Original entry on oeis.org

10, 70, 190, 1330, 8170, 9730, 24130, 28462, 58030, 98458, 143830, 144886, 327370, 856786, 1580230, 1620130, 3536470, 5274970, 6082490, 6376126, 6792710, 8066170, 8610610, 14076910, 17728930, 27275158, 42447406, 52970386, 53497978, 68925130
Offset: 1

Views

Author

Labos Elemer, Nov 25 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ f=PowerMod[ 11, 2n-1, 2n ]; If[ f==1, Print[ 2n ] ],{n,2,800000} ] (* Alexander Adamchuk, May 26 2007 *)
    lst = {}; Do[ If[ PowerMod[11, 2n - 1, 2n] == 1, AppendTo[lst, 2n]], {n, 2, 2*10^9}]; lst (* Robert G. Wilson v, Jun 01 2007 *)
    Select[Range[4,68926000,2],PowerMod[11,#-1,#]==1&] (* Harvey P. Dale, Oct 16 2021 *)
  • PARI
    is(k) = k > 2 && !(k % 2) &&  Mod(11, k)^(k-1) == 1; \\ Amiram Eldar, Sep 18 2024

Extensions

More terms from Alexander Adamchuk, May 26 2007
Further terms from Robert G. Wilson v, Jun 01 2007

A020237 Strong pseudoprimes to base 11.

Original entry on oeis.org

133, 793, 2047, 4577, 5041, 12403, 13333, 14521, 17711, 23377, 43213, 43739, 47611, 48283, 49601, 50737, 50997, 56057, 58969, 68137, 74089, 85879, 86347, 87913, 88831, 102173, 111055, 114211, 115231, 137149, 139231, 171601, 172369, 193249, 196555
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

A374976 Odd k with p^k mod k != p for all primes p.

Original entry on oeis.org

1, 9, 27, 63, 75, 81, 115, 119, 125, 189, 207, 209, 215, 235, 243, 279, 299, 319, 323, 387, 407, 413, 423, 515, 517, 531, 535, 551, 567, 575, 583, 611, 621, 623, 667, 675, 707, 713, 729, 731, 747, 767, 779, 783, 799, 815, 835, 851, 869, 893, 899, 917, 923, 927
Offset: 1

Views

Author

Francois R. Grieu, Jul 26 2024

Keywords

Comments

Alternatively: 1, and odd composites not a pseudoprime to any prime base.
The sequence contains no primes, no pseudoprimes to any prime base (A001567, A005935, A005936, A005938, A020139, A020141...), and no Carmichael numbers (A002997).

Examples

			k=3 (resp. 5, 7) is not in the sequence because for prime p=2 it holds p^k mod k = 2 which is p.
k=9 is in the sequence because for prime p=2 (resp. 3, 5, 7) it holds p^k mod k = 8 (resp. 0, 8, 1) which is not p, and for all other primes p it holds p>=k therefore p^k mod k can't be p.
		

Crossrefs

Programs

  • Mathematica
    Cases[Range[1, 930, 2], k_/; (For[p=2, p=k)]
Showing 1-3 of 3 results.