cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020142 Pseudoprimes to base 14.

Original entry on oeis.org

15, 39, 65, 195, 481, 561, 781, 793, 841, 985, 1105, 1111, 1541, 1891, 2257, 2465, 2561, 2665, 2743, 3277, 5185, 5713, 6501, 6533, 6541, 7107, 7171, 7449, 7543, 7585, 8321, 9073, 10585, 12403, 12505, 12545, 12805, 12871, 13429, 14111, 14689, 15067, 15457
Offset: 1

Views

Author

Keywords

Comments

Composite numbers n such that 14^(n-1) == 1 (mod n). - Michel Lagneau, Feb 18 2012

Crossrefs

Cf. A001567 (pseudoprimes to base 2).

Programs

  • Maple
    select(t -> not isprime(t) and 14 &^ (t-1) mod t = 1, [seq(i,i=3..20000,2)]); # Robert Israel, Jun 12 2018
  • Mathematica
    pseudos14 = {}; n = 1; While[Length[pseudos14] < 100, n++; If[!PrimeQ[n] && PowerMod[14, n - 1, n] == 1, AppendTo[pseudos14, n]]]; pseudos14 (* T. D. Noe, Feb 21 2012 *)