A020145 Pseudoprimes to base 17.
4, 8, 9, 16, 45, 91, 145, 261, 781, 1111, 1228, 1305, 1729, 1885, 2149, 2821, 3991, 4005, 4033, 4187, 4912, 5365, 5662, 5833, 6601, 6697, 7171, 8481, 8911, 10585, 11476, 12403, 12673, 13333, 13833, 15805, 15841, 16705, 19345, 19729, 20591, 21781, 22791
Offset: 1
Keywords
Examples
17^3 = 4913 = 1 mod 4, so 4 is in the sequence (note the Crandall and Pomerance caveat, however). 17^4 = 83521 = 1 mod 5, but 5 is actually prime, so it's not in the sequence. 17^5 = 1419857 = 5 mod 6, so 6 is not in the sequence either.
References
- Richard Crandall and Carl Pomerance, "Prime Numbers - A Computational Perspective", Second Edition, Springer Verlag 2005, ISBN 0-387-25282-7 Page 132 (Theorem 3.4.2. and Algorithm 3.4.3).
Links
- R. J. Mathar and T. D. Noe, Table of n, a(n) for n = 1..1000 (R. J. Mathar to 799 terms)
- Fred Richman, Primality testing with Fermat's little theorem
- Index entries for sequences related to pseudoprimes
Crossrefs
Cf. A001567 (pseudoprimes to base 2).
Programs
-
Mathematica
base = 17; pp17 = {}; n = 1; While[Length[pp17] < 100, n++; If[!PrimeQ[n] && PowerMod[base, n - 1, n] == 1, AppendTo[pp17, n]]]; pp17 (* T. D. Noe, Feb 21 2012 *) Select[Range[23000], !PrimeQ[#] && PowerMod[17, # - 1, #] == 1 &] (* Harvey P. Dale, Apr 20 2019 *)
Comments