cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020332 Numbers whose base-4 representation is the juxtaposition of two identical strings.

Original entry on oeis.org

5, 10, 15, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255, 1040, 1105, 1170, 1235, 1300, 1365, 1430, 1495, 1560, 1625, 1690, 1755, 1820, 1885, 1950, 2015, 2080, 2145, 2210, 2275, 2340, 2405, 2470, 2535, 2600, 2665, 2730, 2795, 2860, 2925, 2990
Offset: 1

Views

Author

David W. Wilson, Melia Aldridge (ma38(AT)spruce.evansville.edu)

Keywords

Examples

			102_10 = 1212_4. - _Jon E. Schoenfield_, Feb 11 2021
		

Crossrefs

Programs

  • Mathematica
    a[n_] := n + n*4^Floor[Log[4, n] + 1]; Array[a, 50] (* Amiram Eldar, Apr 06 2021 *)
    b4jQ[n_]:=Module[{idn4=IntegerDigits[n,4],len},len=Length[idn4];EvenQ[len] && Take[ idn4,len/2]==Take[idn4,-len/2]]; Select[Range[3000],b4jQ] (* or *) Table[If[ #[[1]] == 0,Nothing,FromDigits[#,4]]&/@(Flatten[Join[{#,#}]]&/@Tuples[ {0,1,2,3},n]),{n,3}]//Flatten(* Harvey P. Dale, Sep 02 2022 *)

Formula

a(n) = n*4^floor(log_4(n)+1) + n. - Ilya Gutkovskiy, Jan 26 2018