A020333 Numbers whose base-5 representation is the juxtaposition of two identical strings.
6, 12, 18, 24, 130, 156, 182, 208, 234, 260, 286, 312, 338, 364, 390, 416, 442, 468, 494, 520, 546, 572, 598, 624, 3150, 3276, 3402, 3528, 3654, 3780, 3906, 4032, 4158, 4284, 4410, 4536, 4662, 4788, 4914, 5040, 5166, 5292, 5418, 5544, 5670, 5796, 5922, 6048
Offset: 1
Examples
182_10 = 1212_5. - _Jon E. Schoenfield_, Feb 11 2021
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harvey P. Dale)
Programs
-
Mathematica
tis5Q[n_]:=Module[{idn=IntegerDigits[n,5],len},len=Length[idn];EvenQ[len] && Take[idn,len/2]==Take[idn,-len/2]]; Select[Range[6500],tis5Q] (* or *) Flatten[Table[FromDigits[#,5]&/@Select[(Flatten[{#,#}]&/@Tuples[ Range[ 0,4],n]),#[[1]]!=0&],{n,3}]] (* The second program is significantly faster than the first. *) (* Harvey P. Dale, Apr 08 2013 *) a[n_] := n + n*5^Floor[Log[5, n] + 1]; Array[a, 50] (* Amiram Eldar, Apr 06 2021 *)
-
Python
from itertools import count, product def agen(): for d in count(1): for first in "1234": for p in product("01234", repeat=d-1): yield int((first+"".join(p))*2, 5) g = agen() print([next(g) for n in range(1, 49)]) # Michael S. Branicky, Jun 12 2021
Formula
a(n) = n*5^floor(log_5(n)+1) + n. - Ilya Gutkovskiy, Jan 26 2018