cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020491 Numbers k such that sigma_0(k) divides phi(k).

Original entry on oeis.org

1, 3, 5, 7, 8, 9, 10, 11, 13, 15, 17, 18, 19, 21, 23, 24, 26, 28, 29, 30, 31, 33, 34, 35, 37, 39, 40, 41, 43, 45, 47, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 63, 65, 67, 69, 70, 71, 72, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 87, 88, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 103, 104
Offset: 1

Views

Author

Keywords

Comments

In other words, numbers k such that d(k) divides phi(k).
From Enrique Pérez Herrero, Aug 11 2010: (Start)
sigma_0(k) divides phi(k) when:
k is an odd prime: A065091;
k is an odd squarefree number: A056911;
k = 2^m, where m <> 1 is a Mersenne number (A000225).
If d divides (p-1), with p prime, then p^(d-1) is in this sequence, as are p^(p-1), p^(p-2) and p^(-1+p^n).
(End)
phi(n) and d(n) are multiplicative functions, so if m and n are coprime and both of them are in this sequence then m*n is also in this sequence. - Enrique Pérez Herrero, Sep 05 2010
From Bernard Schott, Aug 14 2020: (Start)
The corresponding quotients are in A289585.
About the 3rd case of Enrique Pérez Herrero's comment: if k = 2^M_m, where M_m = 2^m - 1 is a Mersenne number >= 3 (A000225), then the corresponding quotient phi(k)/d(k) is the integer 2^(2^m-m-2) = A076688(m); hence, these numbers k, A058891 \ {2}, form a subsequence. (End)

Crossrefs

Complement of A015733. [Enrique Pérez Herrero, Aug 11 2010]

Programs

  • Mathematica
    Select[ Range[ 105 ], IntegerQ[ EulerPhi[ # ]/DivisorSigma[ 0, # ] ]& ]
  • PARI
    isok(k) = !(eulerphi(k) % numdiv(k)); \\ Michel Marcus, Aug 10 2020