cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A112954 Number of numbers m such that phi(m) = n*tau(m), with phi=A000010 and tau=A000005.

Original entry on oeis.org

7, 9, 10, 9, 7, 17, 4, 17, 14, 15, 7, 19, 2, 16, 20, 21, 0, 29, 0, 29, 9, 13, 7, 32, 7, 11, 23, 21, 7, 39, 0, 19, 17, 4, 11, 44, 2, 0, 11, 41, 7, 24, 2, 19, 30, 11, 0, 55, 4, 23, 7, 21, 7, 46, 9, 27, 4, 11, 0, 61, 0, 0, 27, 29, 9, 30, 2, 10, 19, 31, 0, 57, 2, 9, 27, 4, 4, 30, 2, 50, 29, 9
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2005

Keywords

Crossrefs

Extensions

More terms from Max Alekseyev, Mar 01 2010

A015733 Numbers k such that d(k) does not divide phi(k).

Original entry on oeis.org

2, 4, 6, 12, 14, 16, 20, 22, 25, 27, 32, 36, 38, 42, 44, 46, 48, 50, 54, 60, 62, 64, 66, 68, 75, 80, 81, 86, 92, 94, 96, 100, 112, 114, 116, 118, 121, 132, 134, 138, 142, 144, 150, 154, 158, 160, 162, 164, 166, 180, 186, 188, 189, 192, 196, 200, 204
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000005 (d), A000010 (phi), A015734, A020491 (d(k) does divide phi(k)).

Programs

  • Mathematica
    Select[Range[204], ! Divisible[EulerPhi[#], DivisorSigma[0, #]] &]
  • PARI
    is(k) = {my(f = factor(k), d = numdiv(f), p = eulerphi(f)); p % d;} \\ Amiram Eldar, May 15 2024

A279289 Numbers k such that phi(k) > tau(k).

Original entry on oeis.org

5, 7, 9, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Jaroslav Krizek, Dec 09 2016

Keywords

Comments

Numbers k such that A000010(k) > A000005(k).
There are 11 numbers k such that phi(k) <= tau(k) and 7 numbers k such that phi(k) = tau(k); see A020490 and A020488.
For k >= 31; phi(k) - tau(k) >= 1, see A063070.

Examples

			14 is a term because phi(14) = 6 > tau(14) = 4.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..1000] | EulerPhi(n) gt NumberOfDivisors(n)];
    
  • Mathematica
    Select[Range@ 77, EulerPhi@ # > DivisorSigma[0, #] &] (* Michael De Vlieger, Dec 11 2016 *)
  • PARI
    is(n) = eulerphi(n) > numdiv(n) \\ Felix Fröhlich, Dec 09 2016
    
  • PARI
    a(n)=if(n<20, select(k -> eulerphi(k)>numdiv(k), [5..29])[n], n+11) \\ Charles R Greathouse IV, Dec 16 2016

Formula

a(n) = n + 11 for n >= 20.

A289585 Quotients as they appear as k increases when tau(k) divides phi(k).

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 1, 5, 6, 2, 8, 1, 9, 3, 11, 1, 3, 2, 14, 1, 15, 5, 4, 6, 18, 6, 2, 20, 21, 4, 23, 14, 8, 4, 26, 10, 3, 9, 7, 29, 30, 6, 12, 33, 11, 3, 35, 2, 36, 9, 6, 15, 3, 39, 10, 41, 2, 16, 14, 5, 44, 2, 18, 15, 18, 48, 7, 10, 50, 4, 51, 6, 6, 13, 53, 3, 54, 5, 18, 56, 22, 12, 24, 2
Offset: 1

Views

Author

Bernard Schott, Jul 08 2017

Keywords

Comments

Numbers k such that tau(k) divides phi(k) are in A020491.
Only for seven integers which are in A020488, we have a(n) = 1.
The integers such that a(n) = 2, 3, 4 are respectively in A062516, A063469, A063470.
When p is an odd prime then phi(p) = p-1, tau(p) = 2, so phi(p)/tau(p) = (p-1)/2 and A005097 is an infinite subsequence.
For k = A058891(m+1), that is 2^A000225(m), with m>=2, the corresponding quotient phi(k)/tau(k) is the integer A076688(m). - Bernard Schott, Aug 15 2020

Examples

			a(10) = 2 because A020491(10) = 15 and phi(15)/tau(15) = 8/4 = 2.
		

Crossrefs

Programs

  • Maple
    for n from 1 to 50 do q:=phi(n)/tau(n);
    if q=floor(q) then print(n,q,phi(n),tau(n)) else fi; od:
  • Mathematica
    f[n_] := Block[{d = EulerPhi[n]/DivisorSigma[0, n]}, If[ IntegerQ@d, d, Nothing]]; Array[f, 120] (* Robert G. Wilson v, Jul 09 2017 *)
  • PARI
    lista(nn) = {for (n=1, nn, q = eulerphi(n)/numdiv(n); if (denominator(q)==1, print1(q, ", ")););} \\ Michel Marcus, Jul 10 2017

Formula

a(n) = A000010(A020491(n)) / A000005(A020491(n)). - David A. Corneth, Jul 09 2017

A124331 a(n) is the ((phi(n) mod d(n)) + 1)-th positive divisor of n, where phi(n) is number of positive integers which are <= n and are coprime to n and d(n) is the number of positive divisors of n.

Original entry on oeis.org

1, 2, 1, 4, 1, 3, 1, 1, 1, 1, 1, 6, 1, 7, 1, 8, 1, 1, 1, 4, 1, 11, 1, 1, 25, 1, 9, 1, 1, 1, 1, 16, 1, 1, 1, 4, 1, 19, 1, 1, 1, 7, 1, 4, 1, 23, 1, 12, 1, 5, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 31, 1, 16, 1, 11, 1, 4, 1, 1, 1, 1, 1, 1, 25, 1, 1, 1, 1, 4, 81, 1, 1, 1, 1, 43, 1, 1, 1, 1, 1, 4, 1, 47, 1, 24, 1, 1, 1
Offset: 1

Views

Author

Leroy Quet and Ray Chandler, Oct 26 2006

Keywords

Crossrefs

Cf. A020491 (positions of 1's), A342665 (fixed points).

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, d[[Mod[EulerPhi[n], Length[d]] + 1]]];Table[f[n], {n, 100}] (* Ray Chandler, Oct 26 2006 *)
  • PARI
    A124331(n) = { my(m=eulerphi(n)%numdiv(n), ds=divisors(n)); ds[1+m]; }; \\ Antti Karttunen, Mar 30 2021

A279287 a(n) = numerator of (phi(n)/tau(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 1, 2, 1, 5, 2, 6, 3, 2, 8, 8, 1, 9, 4, 3, 5, 11, 1, 20, 3, 9, 2, 14, 1, 15, 8, 5, 4, 6, 4, 18, 9, 6, 2, 20, 3, 21, 10, 4, 11, 23, 8, 14, 10, 8, 4, 26, 9, 10, 3, 9, 7, 29, 4, 30, 15, 6, 32, 12, 5, 33, 16, 11, 3, 35, 2, 36, 9, 20, 6, 15, 3
Offset: 1

Views

Author

Jaroslav Krizek, Dec 09 2016

Keywords

Comments

a(n) = numerator of (A000010(n)/A000005(n)).
See A279288 (denominator of (phi(n)/tau(n))) and A063070 (phi(n)-tau(n)).
a(n) = 1 and A279288(n) = 1 for numbers n in A020488; a(n) > A279288(n) for numbers n in A279289.

Examples

			For n = 6: phi(6)/tau(6) = 2/4 = 1/2; a(6) = 1.
		

Crossrefs

Programs

  • Magma
    [Numerator(EulerPhi(n)/NumberOfDivisors(n)): n in[1..1000]];
    
  • Maple
    with(numtheory): A279287:=n->numer(phi(n)/sigma(n)): seq(A279287(n), n=1..150); # Wesley Ivan Hurt, Dec 11 2016
  • Mathematica
    Table[Numerator[EulerPhi[n]/DivisorSigma[0, n]], {n, 78}] (* Michael De Vlieger, Dec 09 2016 *)
  • PARI
    a(n) = numerator(eulerphi(n)/numdiv(n)) \\ Felix Fröhlich, Dec 09 2016

A279288 a(n) = denominator of (phi(n)/tau(n)).

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 5, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Dec 09 2016

Keywords

Comments

a(n) = denominator of (A000010(n)/A000005(n)).
See A279287 (numerator of (phi(n)/tau(n))) and A063070 (phi(n)-tau(n)).
a(n) = 1 and A279287(n) = 1 for numbers n in A020488; A279287(n) > a(n) for numbers n in A279289.

Examples

			For n = 6: phi(6)/tau(6) = 2/4 = 1/2; a(6) = 2.
		

Crossrefs

Programs

  • Magma
    [Denominator(EulerPhi(n)/NumberOfDivisors(n)): n in[1..1000]];
    
  • Mathematica
    Table[Denominator[EulerPhi[n]/DivisorSigma[0, n]], {n, 120}] (* Michael De Vlieger, Dec 10 2016 *)
  • PARI
    a(n) = denominator(eulerphi(n)/numdiv(n)) \\ Felix Fröhlich, Dec 09 2016

Formula

a(n) = 1 for numbers in A020491.

A286627 a(n) = exponent of the highest power of A000005(n) (number of divisors of n) dividing A000010(n) (totient function phi), a(1) = 1.

Original entry on oeis.org

1, 0, 1, 0, 2, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 4, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 2, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 1, 3, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 1, 2, 0, 1, 1, 1, 1, 1, 0, 2, 0, 2, 0, 2, 0, 1, 0, 1, 1, 1, 1, 3, 1, 0, 2, 1, 1, 1, 0, 0, 1, 1, 1, 3, 0, 1, 1, 3, 1, 1, 0, 1, 0, 1, 0, 5, 1, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 4, 0, 1, 0, 2, 0, 2, 1, 0
Offset: 1

Views

Author

Antti Karttunen, Jun 30 2017

Keywords

Comments

a(1) = 1 by convention.

Examples

			A000005(5) = 2, A000010(5) = 4, 2^2 is the highest power of 2 which divides 4, thus a(5) = 2.
A000005(6) = 4, A000010(6) = 2, 4^0 = 1 is the highest power of 4 which divides 2, thus a(6) = 0.
		

Crossrefs

Cf. A015733 (positions of zeros), A020491 (of nonzeros).

Programs

  • PARI
    A286627(n) = valuation(eulerphi(n), numdiv(n));

Formula

a(n) = A286561(A000010(n), A000005(n)).

A020493 Numbers k such that d(k) (number of divisors) divides phi(k) (Euler function) divides sigma(k) (sum of divisors).

Original entry on oeis.org

1, 3, 15, 30, 35, 56, 70, 78, 105, 140, 168, 190, 210, 248, 264, 357, 420, 570, 616, 630, 714, 744, 812, 840, 910, 1045, 1240, 1485, 1672, 1848, 2090, 2214, 2436, 2580, 2730, 3080, 3135, 3339, 3596, 3720, 3956, 4064, 4180, 4522, 4674, 5016, 5049, 5278, 5396
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that sigma_0(k) divides phi(k) divides sigma_1(k).

Examples

			210 has 16 divisors, which divides phi(210) = 48, which in turn divides sigma(210) = 576, so 210 is a term of the sequence.
		

References

  • David Wells, Curious and interesting numbers, Penguin Books, p. 130.

Crossrefs

Intersection of A020491 and A020492.

Programs

  • Mathematica
    q[n_] := And @@ IntegerQ /@ Ratios @ {DivisorSigma[0, n], EulerPhi[n], DivisorSigma[1, n]}; Select[Range[6000], q] (* Amiram Eldar, Apr 13 2024 *)
  • PARI
    for(n=1, 1e3, if(sigma(n)%eulerphi(n)==0, if(sigma(n)%numdiv(n)==0, if(eulerphi(n)%numdiv(n)==0, print1(n, ", "))))) \\ Felix Fröhlich, Aug 08 2014

Extensions

Wells incorrectly has 52 instead of 56.

A069237 Composite numbers k such that tau(k) divides phi(k), where tau(k) is the number of divisors of k and phi(k) the Euler totient function.

Original entry on oeis.org

8, 9, 10, 15, 18, 21, 24, 26, 28, 30, 33, 34, 35, 39, 40, 45, 49, 51, 52, 55, 56, 57, 58, 63, 65, 69, 70, 72, 74, 76, 77, 78, 82, 84, 85, 87, 88, 90, 91, 93, 95, 98, 99, 102, 104, 105, 106, 108, 110, 111, 115, 117, 119, 120, 122, 123, 124, 125, 126, 128, 129, 130, 133
Offset: 1

Views

Author

Benoit Cloitre, Apr 13 2002

Keywords

Comments

Includes A046388 and 2*A002144. - Robert Israel, Jan 05 2018

Crossrefs

Composite numbers in A020491.

Programs

  • Maple
    filter:= n -> not isprime(n) and numtheory:-phi(n) mod numtheory:-tau(n)=0:
    select(filter, [$4..1000]); # Robert Israel, Jan 05 2018
  • Mathematica
    nn=200;Rest[Select[Complement[Range[nn],Prime[Range[PrimePi[nn]]]],Divisible[ EulerPhi[#], DivisorSigma[0,#]]&]] (* Harvey P. Dale, Mar 31 2011 *)
  • PARI
    isok(k) = if(k == 1 || isprime(k), 0, my(f = factor(k)); !(eulerphi(f) % numdiv(f))); \\ Amiram Eldar, Apr 19 2025
Showing 1-10 of 18 results. Next