cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A279289 Numbers k such that phi(k) > tau(k).

Original entry on oeis.org

5, 7, 9, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Jaroslav Krizek, Dec 09 2016

Keywords

Comments

Numbers k such that A000010(k) > A000005(k).
There are 11 numbers k such that phi(k) <= tau(k) and 7 numbers k such that phi(k) = tau(k); see A020490 and A020488.
For k >= 31; phi(k) - tau(k) >= 1, see A063070.

Examples

			14 is a term because phi(14) = 6 > tau(14) = 4.
		

Crossrefs

Programs

  • Magma
    [n: n in[1..1000] | EulerPhi(n) gt NumberOfDivisors(n)];
    
  • Mathematica
    Select[Range@ 77, EulerPhi@ # > DivisorSigma[0, #] &] (* Michael De Vlieger, Dec 11 2016 *)
  • PARI
    is(n) = eulerphi(n) > numdiv(n) \\ Felix Fröhlich, Dec 09 2016
    
  • PARI
    a(n)=if(n<20, select(k -> eulerphi(k)>numdiv(k), [5..29])[n], n+11) \\ Charles R Greathouse IV, Dec 16 2016

Formula

a(n) = n + 11 for n >= 20.

A279288 a(n) = denominator of (phi(n)/tau(n)).

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 5, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 5, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 2, 1, 7, 1, 2, 1, 3, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Jaroslav Krizek, Dec 09 2016

Keywords

Comments

a(n) = denominator of (A000010(n)/A000005(n)).
See A279287 (numerator of (phi(n)/tau(n))) and A063070 (phi(n)-tau(n)).
a(n) = 1 and A279287(n) = 1 for numbers n in A020488; A279287(n) > a(n) for numbers n in A279289.

Examples

			For n = 6: phi(6)/tau(6) = 2/4 = 1/2; a(6) = 2.
		

Crossrefs

Programs

  • Magma
    [Denominator(EulerPhi(n)/NumberOfDivisors(n)): n in[1..1000]];
    
  • Mathematica
    Table[Denominator[EulerPhi[n]/DivisorSigma[0, n]], {n, 120}] (* Michael De Vlieger, Dec 10 2016 *)
  • PARI
    a(n) = denominator(eulerphi(n)/numdiv(n)) \\ Felix Fröhlich, Dec 09 2016

Formula

a(n) = 1 for numbers in A020491.

A290634 Positive integers which are never the quotient of phi(n)/tau(n).

Original entry on oeis.org

17, 19, 31, 38, 47, 59, 61, 62, 71, 85, 91, 101, 103, 107, 109, 118, 121, 133, 137, 149, 151, 157, 167, 181, 187, 197, 211, 217, 218, 223, 227, 229, 241, 247, 257, 259, 263, 266, 269, 271, 283, 289, 305, 311, 313, 314, 317, 327, 331, 334, 337, 347, 349, 353, 355, 361, 367
Offset: 1

Views

Author

Bernard Schott, Aug 08 2017

Keywords

Comments

For phi(n)/tau(n) see A279287/A279288.
Numbers that do not appear in A175667.
The first nine terms of this sequence are exactly A119480(3) through A119480(11), and many other terms are common to these two sequences.

Crossrefs

Showing 1-3 of 3 results.