cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020513 Cyclotomic polynomials evaluated at x=-1.

Original entry on oeis.org

-1, -2, 0, 1, 2, 1, 3, 1, 2, 1, 5, 1, 1, 1, 7, 1, 2, 1, 3, 1, 1, 1, 11, 1, 1, 1, 13, 1, 1, 1, 1, 1, 2, 1, 17, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 23, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 29, 1, 1, 1, 31, 1, 2
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A138929 (2*p^m, m >= 0 values).

Programs

  • Maple
    with(numtheory,cyclotomic); f := n->subs(x=-1,cyclotomic(n,x)); seq(f(i),i=0..64);
  • Mathematica
    Array[Cyclotomic[#, -1] &, 90, 0] (* Robert G. Wilson v, Nov 23 2016 *)
  • PARI
    a(n) = if (n==0, -1, subst(polcyclo(n), x, -1)); \\ Michel Marcus, Apr 22 2016
    
  • PARI
    a(n) = if (n==0, -1, if (n==1, -2, if (n==2, 0, if (!(n % 2) && isprimepower(n/2,&p), p, 1)))); \\ Michel Marcus, Nov 23 2016
    
  • Python
    from sympy import primefactors
    def A020513(n): return (-1,-2,0)[n] if n<3 else (f[0] if n&1^1 and len(f:=primefactors(n>>1))==1 else 1) # Chai Wah Wu, Aug 26 2024

Formula

For n >= 3: if n = 2*p^m with a prime p then a(n) = p otherwise a(n) = 1. - Ola Veshta (olaveshta(AT)my-deja.com), Jun 01 2001