cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A020524 a(n) = 4th Euler polynomial evaluated at 2^n.

Original entry on oeis.org

0, 2, 132, 3080, 57360, 983072, 16252992, 264241280, 4261413120, 68451041792, 1097364145152, 17575006177280, 281337537761280, 4502500115750912, 72048797944922112, 1152851135862702080, 18446181123756195840, 295143401579725586432, 4722330454072626511872, 75557575495538172231680
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    seq(euler(4, 2^n), n=0..24);
  • Mathematica
    Table[EulerE[4,2^n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
  • PARI
    concat(0, Vec(-2*x*(40*x+1)/((2*x-1)*(8*x-1)*(16*x-1)) + O(x^100))) \\ Colin Barker, May 04 2015

Formula

From Colin Barker, May 04 2015: (Start)
a(n) = 2^n - 2^(1+3*n) + 16^n.
a(n) = 26*a(n-1) - 176*a(n-2) + 256*a(n-3) for n > 2.
G.f.: -2*x*(40*x+1)/((2*x-1)*(8*x-1)*(16*x-1)). (End)
E.g.f.: exp(2*x)*(exp(14*x) - 2*exp(6*x) + 1). - Elmo R. Oliveira, Feb 22 2025