A020526 a(n) = 6th Euler polynomial evaluated at 2^n.
0, 2, 1332, 166376, 13651920, 973242272, 65499561792, 4294977781376, 278176525712640, 17908846064302592, 1149543810255025152, 73678889946730981376, 4718907718699422044160, 302120774441963815411712, 19339271338993904793894912, 1237826702489967325274341376
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..553
- Index entries for linear recurrences with constant coefficients, signature (106,-3024,22016,-32768).
Programs
-
Maple
seq(euler(6,2**i),i=0..24);
-
Mathematica
Table[EulerE[6,2^n],{n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Nov 03 2009 *)
-
PARI
concat(0, Vec(2*x*(15616*x^2+560*x+1)/((2*x-1)*(8*x-1)*(32*x-1)*(64*x-1)) + O(x^100))) \\ Colin Barker, May 04 2015
Formula
a(n) = 106*a(n-1)-3024*a(n-2)+22016*a(n-3)-32768*a(n-4) for n>3. - Colin Barker, May 04 2015
G.f.: 2*x*(15616*x^2+560*x+1) / ((2*x-1)*(8*x-1)*(32*x-1)*(64*x-1)). - Colin Barker, May 04 2015