cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A020527 2nd Bernoulli polynomial evaluated at powers of 2 (multiplied by 6).

Original entry on oeis.org

1, 13, 73, 337, 1441, 5953, 24193, 97537, 391681, 1569793, 6285313, 25153537, 100638721, 402604033, 1610514433, 6442254337, 25769410561, 103078428673, 412315287553, 1649264295937, 6597063475201, 26388266483713, 105553091100673, 422212414734337, 1688849759600641, 6755399239729153
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A020528.

Programs

  • Magma
    [6 * (4^n - 2^n) + 1: n in [0..40]]; // Vincenzo Librandi, Apr 25 2011
  • Maple
    seq(6*bernoulli(2,2^i),i=0..24);
  • Mathematica
    6*BernoulliB[2, 2^Range[0, 30]] (* Paolo Xausa, Sep 16 2024 *)

Formula

a(n) = 6*(4^n - 2^n) + 1. - Ralf Stephan, Apr 06 2004
G.f.: (-1 - 6*x + 4*x^2)/((x-1)*(2*x-1)*(4*x-1)). - R. J. Mathar, Jun 11 2013
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(x)*(6*exp(x)*(exp(2*x) - 1) + 1).
a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n > 2. (End)
Showing 1-1 of 1 results.